

NETOOK CROSSING SE3-33-1-W5M MOUNTAIN VIEW COUNTY

Geotechnical Assessment

Joel Rombough, P. Eng.	Jason Deschamps, P.Eng.
Author	Reviewer

Prepared For: 1273927 Alberta Ltd.

Date: 2024-08-19 Our File No.: 3903.T01 WATT CONSULTING GROUP 1300 – 736 6th Ave SW Calgary, AB T2P 3T7 (403) 273-9001

TABLE OF CONTENTS

1.0	INTRO	ODUCTION	3
2.0	PROJ	ECT BACKGROUND	3
3.0	GEOT	ECHNICAL INVESTIGATION	3
	3.1	Investigation Methodology	3
	3.2	Subsurface Ground Conditions	4
	3.3	Subsurface Groundwater Conditions	6
4.0	GEOT	ECHNICAL COMMENTS AND RECOMMENDATIONS	8
	4.1	General Geotechnical Commentary	8
	4.2	Site Preparation	8
	4.3	Backfill and Compaction	9
	4.4	Trench Bedding and Compaction	9
	4.5	Strip and Spread Footings	10
	4.6	Non-Structural Floor Slabs-on-Grade	11
	4.7	Lateral Earth Pressures	11
	4.8	Temporary Excavation and Dewatering	12
	4.9	Site Grading, Drainage and Dewatering	13
	4.10	Pavement Design Considerations	14
	4.11	Concrete Exposure Class	14
	4.12	Seismic Considerations	15
	4.13	Frost Protection	15
	4.14	Review, Testing and Field Inspection	16
5.0	LIMIT	ATIONS	17
6.0	CLOS	URE	17

LIST OF TABLES

Table 1: Soils Index Test Results – Silty Clay Till	5
·	
Table 2: Water Level Readings Summary	6
· ,	
Table 3: Recommended Asphaltic Concrete Pavement Structure	14

APPENDICES

APPENDIX A: Figure 1 – Borehole Location Plan

APPENDIX B: Borehole Records

APPENDIX C: Laboratory Test Results

1.0 INTRODUCTION

Watt Consulting Group (WATT) was retained by 1273927 Alberta Ltd. to complete a geotechnical assessment to support development within the Netook Crossing subdivision. The objective of the geotechnical assessment was to determine the subsurface ground and groundwater conditions at the project site, and to provide geotechnical comments and recommendations pertinent to project design and construction.

2.0 PROJECT BACKGROUND

The project site, SE3-33-1-W5M, is located east of Olds, Alberta, North of Highway 27, West of Range Road 12, and South of the Olds Golf Club within the municipality of Mountain View County. At the time of investigation, the site was an undeveloped quarter section, used for agriculture activities.

Based on a review of published geological data and our local experience, the subsurface ground conditions at the project site comprise of clay till, underlain by weathered bedrock.

The concept plan for this development involves a residential subdivision with future Business Park at the southern end of the property. A geotechnical investigation is required to support development and building permit applications, and to provide comments and recommendations for foundation design and other development features.

3.0 GEOTECHNICAL INVESTIGATION

3.1 Investigation Methodology

During a previous Geotechnical Investigation by MacIntosh Lalani in 2008, nine boreholes were drilled within the project area. To comply with the County spacing requirements, an additional twenty seven boreholes were completed, representing a total of thirty six boreholes on the subject property. On December 1 and 2, 2023, WATT staff oversaw the drilling of twenty seven geotechnical boreholes at the approximate locations shown on Figure 1 – Borehole Location Plan, attached in Appendix A. Borehole locations were selected based on site access and locations of underground and overhead utilities at time of drilling. Drilling was carried out by Venom Drilling of Blackfalds, Alberta, using a truck mounted solid stem auger drill rig. All boreholes were advanced to the design depth of 6 meters below ground surface (mbgs), with the exception of BH23-04 which reached early refusal. Standard penetration Tests (SPTs) were completed at select intervals, and soil samples were taken from the split spoon sampler and from the auger flight.

The subsurface ground and groundwater conditions were logged in the field by WATT staff as drilling proceeded. The subsurface stratigraphy encountered is shown on the Borehole Records attached in Appendix B. 25 mm diameter standpipe piezometers were installed in each of the boreholes.

Soil samples obtained during drilling were submitted to Solum Consultants Ltd. Geotechnical and Materials Testing Laboratory in Calgary, Alberta. The following soil index tests were completed on select soil samples:

- Moisture content determination (ASTM D2216) 159 tests;
- Particle size analysis (ASTM D422) 5 tests;
- Atterberg limits (ASTM D4318) 6 tests;
- Water soluble sulphate concentrations (CSA A23.1) 4 tests; and
- California Bearing Ratio (CBR) 1 test.

The soils laboratory test results are shown on the Borehole Records, are attached in Appendix C, and are discussed in Section 3.2.

3.2 Subsurface Ground Conditions

The subsurface stratigraphy encountered at the discrete borehole locations generally comprised of topsoil underlain by silty clay till, with isolated areas of silty sand encountered throughout the site. The Borehole Records attached to this report present WATT's interpretation of the materials encountered. It is noted that the subsurface stratigraphy may be variable between borehole locations. A description of the subsurface soil strata encountered is provided in the following sections.

3.2.1 Topsoil

Topsoil was encountered in all 27 holes, ranging in depth from 0.2 to 0.3 metres.

3.2.2 Silty Clay Till

Silty clay till was the predominant material encountered in all boreholes. The till was light brown to grey in color, contained some sand and trace gravel. Field records indicate the silty clay is low to medium plasticity and was damp to moist. Oxidized stains were observed at variable depths, indicating groundwater influence or infiltration of surface water.

SPTs completed within the silty clay till stratum resulted in N-values ranging from 7 to 32 blows per 300 mm of penetration, indicating the material is firm to hard. Moisture content tests completed within the silty clay till ranged from 9% to 19%, indicating damp to wet

sample conditions. A summary of particle size distribution and Atterberg Limits Test (plasticity) are shown below:

Table 1: Soils Index Test Results – Silty Clay Till

		Att	erberg Lin	nits	Particle Size				
Borehole ID	Depth (m)	Liquid Limit	Plastic Limit	Plasticity Index	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	
BH23-03	2.0	26	17	9	-	-	-	-	
BH23-04	2.0	32	17	15	-	-	-	-	
BH23-06	2.0	38	15	23					
BH23-08	3.0	-	-	-	0	34	48	18	
BH23-11	2.0	37	15	22					
BH23-11	3.0	-	-	-	2	31	47	21	
BH23-15	2.0	34	14	20	-	-	-	-	
BH23-16	1.0	-	-	-	2	36	41	21	
BH23-18	2.0	-	-	-	0	32	42	26	
BH23-19	2.0	34	14	20	-	-	-	-	
BH23-24	3.0	-	-	-	1	34	42	24	

3.2.3 Silty Sand

Silty sand was observed in 12 of the 27 boreholes, typically underlying the topsoil. The silty sand was noted to contain traces of clay and gravel and described as light brown, compact and low plasticity.

Three SPTs completed within the silty sand stratum resulted in N-values ranging from 10 to 13 blows per 150 mm, indicating the material is loose to compact. Moisture content

tests completed on SPT and auger samples ranged from 9% to 13%, indicating dry to damp sample conditions.

3.3 Subsurface Groundwater Conditions

During the subsurface investigation on December 1 and 2, 2023, standpipe piezometers were installed in each borehole to monitor groundwater levels. The piezometers were subsequently damaged and unable to be read. To allow determination of the stabilized groundwater elevation, the 27 piezometers were re-installed on February 8, 2024.

Very little groundwater seepage was observed in all boreholes and each borehole was noted to be dry upon the completion of drilling. It should be recognized that groundwater levels vary seasonally and from year to year, and are dependent on many factors including surface drainage, precipitation and the hydrology of the area.

Since standpipe piezometers were re-installed on February 8, 2024, they have continued to be read frequently to determine the groundwater elevation at each location. The groundwater elevation was recorded to be the highest in the NW corner of the site in Boreholes BH23-01 to -04 and BH23-06 to -08, as can be seen by the data provided in Table 2 below. Installed standpipes were damaged due to farming activities and are unable to be read. Based on the low permeability of the encountered soils, the recorded groundwater elevations are not expected to significantly fluctuate further. For preliminary purposes, the coefficient of permeability of the silty clay till may be taken as $k\sim1*10^{-7}$ m/s.

Table 2: Water Level Readings Summary

Borehole ID	Surface Elevation (masl)	Highest Depth to Water Recorded (m)	Maximum Groundwater Elevation (masl)
BH23-01	1018.8	2.5	1016.3
BH23-02	1019.0	2.7	1016.3
BH23-03	1019.3	4.4	1014.9
BH23-04	1018.3	2.0	1016.3
BH23-05	1020.3	Dry	N/A
BH23-06	1018.6	3.1	1015.5
BH23-07	1018.5	3.5	1015.0

Borehole ID	Surface Elevation (masl)	Highest Depth to Water Recorded (m)	Maximum Groundwater Elevation (masl)
BH23-08	1018.1	2.2	1015.9
BH23-09	1019.4	Dry	N/A
BH23-10	1019.6	4.1	1015.5
BH23-11	1019.5	4.4	1015.1
BH23-12	1018.9	Dry	N/A
BH23-13	1018.7	4.6	1014.1
BH23-14	1020.4	Dry	N/A
BH23-15	1019.5	Dry	N/A
BH23-16	1019.6	5.6	1014.0
BH23-17	1018.8	Dry	N/A
BH23-18	1019.5	Dry	N/A
BH23-19	1018.3	3.9	1014.4
BH23-20	1019.9	5.0	1014.9
BH23-21	1019.4	5.0	1014.4
BH23-22	1018.2	Dry	N/A
BH23-23	1018.9	Dry	N/A
BH23-24	1019.3	Dry	N/A
BH23-25	1018.5	4.7	1013.8
BH23-26	1018.0	Dry	N/A
BH23-27	1019.0	Dry	N/A

4.0 GEOTECHNICAL COMMENTS AND RECOMMENDATIONS

4.1 General Geotechnical Commentary

Design and construction recommendations pertaining to the geotechnical aspects of the proposed development are provided in this report section based on the results of the geotechnical evaluation fieldwork, the laboratory testing carried out, and WATT's understanding of the proposed development at time of report preparation. These recommendations are intended to provide support for various project concepts and specifications as well as insight to determine the most appropriate site-specific construction methodologies. As well, WATT should be retained to review applicable geotechnical aspects of the final design (drawings and specifications) and provide all necessary field reviews.

The subsurface ground and groundwater conditions encountered at the project site are considered suitable for the proposed development. Geotechnical considerations for the project site are summarized as follows:

- Competent foundation materials in the form of silty clay till were encountered at the project site. The materials are suitable to support shallow foundations in form of spread and strip footings.
- While the majority of the site is expected to be below the long-term groundwater level, the NW corner of site may require dewatering effort due to high recorded groundwater elevation.

Detailed design and construction comments and recommendations for the proposed development are provided in the following Sections.

4.2 Site Preparation

All deleterious material such as, but not limited to, surface vegetation and organic soils as well as all fill soils should be sub-excavated to competent, minimum stiff silty clay till subgrade material.

Prior to any development activities, all exposed subgrade surfaces subject to site development should be proof rolled using heavy equipment such as a loaded tandem dump truck. All loose or soft areas must be sub-excavated to competent material and replaced with approved engineered fill. Further recommendations for backfill materials (types, re-use of site soils) and compaction requirements are provided in Section 4.3. The final subgrade surface should be carefully graded to prevent ponding and to direct water away from the building area.

It is recommended to carry out construction during the spring, summer and fall months. If construction is carried out during winter conditions, the subgrade should be protected from freezing. In addition, the subgrade should be protected from wetting or drying, both before and after the placement of engineered fill, granular base material, or concrete. Subgrade surfaces that are allowed to dry or become wet should be scarified, moisture conditioned, and re-compacted.

4.3 Backfill and Compaction

The native silty clay till soils encountered at the project site are generally suitable for reuse as engineered fill. All engineered fill should be placed in lifts not exceeding 200 mm thickness (loose measure) and should be compacted to minimum 98% of Standard Proctor maximum dry density (SPMDD), at a moisture content of 0 to +2% of its optimum moisture content (OMC) for compaction purposes. The maximum lift thickness may vary depending on the compaction equipment used and should be verified through field density testing at time of construction. It is noted that underlying completely weathered silty sand bedrock is likely not suitable for re-use as engineered fill, due to the high silt content and associated difficulty to achieve optimum moisture content for compaction purposes.

Structural fill should comprise of well graded, 25 mm minus crushed gravel. It should be placed in lifts not exceeding 200 mm thickness (loose measure) and should be compacted to minimum 100% of SPMDD, at a moisture content of $\pm 3\%$ of OMC.

All fill must be free from topsoil, organics, fill and otherwise deleterious material, and must not be frozen at time of placement.

4.4 Trench Bedding and Compaction

Trenches shall be excavated to the depths required to provide a uniform and continuous bearing and support for the pipes on solid and undisturbed ground. Any part of the bottom of the trenches excavated below the specified grade shall be backfilled to grade with approved material and thoroughly compacted as directed by the Engineer. The finished sub-grade shall be prepared accurately by means of hand tools.

Where the bottom of the trench is found to be unstable or includes ashes, cinders, refuse, organic, or other material which in the judgment of the Engineer should be removed, the Contractor shall excavate and remove such unsuitable material and backfill with an approved material in 150 mm compacted layers.

Bedding material shall consist of hard durable particles, free from clay lumps, cementation, organic material, frozen material, and other deleterious materials. Bedding

shall be compacted to a minimum 90 to 95% of its Standard Proctor maximum dry density (SPMDD) achieved by means of hand compaction in 150mm lifts, with final densities confirmed by geotechnical testing and documentation.

4.5 Strip and Spread Footings

This Section provides geotechnical design parameters in Limit States Design format as per National Building Code of Canada – 2019 Alberta Edition. As outlined above, conventional spread and strip footings are considered suitable for the proposed building. It is anticipated that footings will be within the silty clay till material.

The following geotechnical foundation design recommendations are based on the foundation dimensions ranging from 0.5 to 2.0 m widths, and a minimum embedment depth of 0.8 m below ground level (measured from ground surface or top of slab-ongrade, whichever is less). Increased embedment depths will be needed to provide adequate soil cover for frost protection purposes (see Section 4.13).

Values for the factored Ultimate Limit States (ULS) and Serviceability Limit States (SLS) geotechnical bearing resistances for bearing capacities for shallow foundations with above noted dimensions may be taken as 200 kPa and 110 kPa respectively. A resistance factor of 0.5 as per Canadian Building Code has been applied to determine the factored bearing resistance at ULS conditions. SLS bearing capacities were determined based on typical tolerable total and differential settlement of 25 mm and 20 mm, respectively.

For larger footings, the geotechnical bearing resistance would generally increase. However, settlement of the footings would also increase and add to the high risk of excessive total and differential settlement for the building structure. WATT would be pleased to complete additional analysis and provide further geotechnical input should footings with more than 2.0 m width be required.

The values presented above are for vertical, concentric loading, as described in the CFEM (2023). For footings subjected to eccentric loads, the following equivalent footing width should be used to calculate the bearing pressure of the footing:

$$B' = B - 2e$$

 $L' = L - 2e$

Where B' is the equivalent footing width; B is the actual footing width; L' is the equivalent footing length, L is the actual footing length, and e is the eccentricity of the load. Effects of inclined loads, if any, should also be considered as discussed in the CFEM (2023).

The subgrade surfaces beneath building foundations must be free from frozen, loose or soft materials. The base of all footings must be inspected by qualified geotechnical personnel prior to placing concrete to confirm the above design bearing pressures and to ensure there are no disturbances or deleterious materials present.

4.6 Non-Structural Floor Slabs-on-Grade

Non-structural cast-in-place concrete slabs-on-grade, placed on approved subgrade soils, are typically used as floor systems. A 150 mm thick levelling course comprising of 25 mm minus crushed gravel (similar to structural fill, see Section 4.3) should be placed below non-structural slab-on-grades. The crushed gravel levelling course should be placed within ±3% of its optimum moisture content for compaction purposes (OMC) and compacted to minimum 100% of its Standard Proctor maximum dry density (SPMDD). It is recommended to place a non-woven geotextile separation membrane between cohesive engineered fill and granular fill.

Vertical differential movements between non-structural floor slabs-on-grade and structural building elements are inevitable and considered to be acceptable as per the current standard of practice. Slabs should float on the subgrade and only be tied into the foundation walls or grade beams at doorways. To reduce the effects of vertical slab movement (e.g. potential slab cracking, partition wall distortion, cracking of brittle finishing surfaces), the following provisions should be implemented to allow the slab to move independently of the structural components of the building:

- Partition and non-bearing walls should not be rigidly connected to bearing walls or columns:
- Reinforce the concrete and articulate the slab at regular intervals to control cracking;
- Heating ducts placed beneath the floor slab should be insulated to minimize drying and shrinkage of clay fill/till soils; and
- Piping and electrical conduits should permit flexibility and some movement.

4.7 Lateral Earth Pressures

Lateral pressures are to be considered acting on below-grade building perimeter walls. The earth pressures will be induced by new fill placed within basement excavation, which is anticipated to comprise of local silty clay till or imported soil of similar nature.

Active earth pressure conditions should be used in establishing earth pressures acting on the underground structure walls. The lateral pressure applied to subgrade walls is calculated using the following formula:

$$P = K (\gamma bH + q)$$

Where:

P = lateral earth pressure (kPa)

K = earth pressure coefficient

 γ_b = soil unit weight

H = Height of wall (m)

q = surcharge load (if applicable)

An earth pressure coefficient of $K_a = 0.40$ may be used for active earth pressure conditions. The soil unit weights for the re-worked silty clay till may be taken as 19 kN/m^3 above the groundwater table.

The equation for lateral earth pressure assumes a horizontal ground surface behind the buried wall. If the ground surface slopes away from the wall, design pressure should be re-evaluated. Hydrostatic pressures acting on below grade walls may also be considered in design, depending on the selected waterproofing/dewatering method (see Section 4.9).

4.8 Temporary Excavation and Dewatering

Temporary excavations (estimated duration of less than 6 months) will be required to construct the basement and for utility trenches. The excavations for this project site are anticipated to be primarily within native silty clay till soil.

All excavations should follow Alberta Occupational Health and Safety Code Standards, Chapter 32 "Excavation and Tunneling". The subsurface soils encountered at the project site are to be classified as "likely to crack or crumble soil". Excavations of up to 1.5 m depth may be cut vertically into the soil strata. Excavations with greater depth may be sloped to within 1.5 m of the bottom of the excavation at an angle of not less than 45° measured from the vertical. It is anticipated that excavation depths will not exceed approximately 4.0 mbgs. Excavations of greater depth should be subject to a slope stability assessment.

Seepage into the excavation at the project site may occur, depending on the groundwater conditions encountered during construction. Although the boreholes were noted to be dry

during drilling, the stabilized groundwater elevation may help to determine the risk of seepage during excavations.

Due to the fine-grained nature of the water bearing ground stratum, temporary excavation side slopes may not be stable without prior lowering of the groundwater level. A suitable dewatering method for the subsurface ground conditions at the project site comprises of a series of vacuum-assisted wellpoints. The wellpoint system should be designed by a qualified dewatering designer/contractor, who may also provide dewatering alternatives based on local experience.

Prior to allowing workers to enter the construction excavations, a thorough inspection should be undertaken for evidence of instability (cracks, bulging, sloughing, seepage, or else). Any loose/unstable soils or cobbles should be scaled from the excavations prior to worker entry. All unsupported excavations should be monitored daily for evidence of slope movements such as slumping, bulging, or else. Any such movements should be reported to WATT and remedial stability measures undertaken immediately.

Stockpiles of construction materials, excavated soil, construction equipment, or traffic should be kept away from the slope crest/edge by a distance equal to the depth of excavation. The vibration created from heavy machinery operations or compaction processes can destabilize a slope; hence, use of heavy machinery within proximity to excavated slopes should be minimized.

Temporary shoring will be required if the excavation geometry cannot be facilitated, or deeper excavations are required for construction aspects. A qualified shoring consultant/contractor should be retained to design a suitable shoring system for the project site, if required.

4.9 Site Grading, Drainage and Dewatering

To provide proper drainage for the proposed development and to direct surface water to areas away from proposed structures, final site landscaping grades should be sloped away from building perimeter walls to mitigate the potential of surficial water ponding in localized areas adjacent to structures. Minimum final site grades draining away from building structures of 1.0% in paved areas, 1.5% in non-paved areas, and 3.0% within 2.0 m laterally of structures adjacent to landscaped areas are recommended.

All downspouts should be directed away from the building structure to a site gradient that promotes positive surficial drainage away from the attached building. Downspouts should not be directed into the perimeter drain or weeping tile system (if constructed).

Based on the groundwater level measurements, groundwater levels may impact typical construction practices in the NW corner of site (location of Boreholes BH23-01 through BH23-08). In this area, weeping tiles are recommended to prevent seepage build-up around basement walls. Weeping tiles may include a sump pump system with designed overland drainage away from foundations or may be designed with positive drainage towards a stormwater system. Basement walls should be damp proofed according to Building Code requirements.

4.10 Pavement Design Considerations

Recommendations for asphaltic concrete structures placed on suitably prepared subgrade soils as outlined in Section 4.2 are provided in the following table:

Table 3: Recommended Asphaltic Concrete Pavement Structure

Material	Minimum Design Thickness (mm)										
Material	Paved Lane	Resident	tial Local	Residential Collector							
Asphalt Concrete	75	75*	90	100							
25 mm Crushed Gravel Base	100	150	150	175							
80 mm Crushed Granular Subbase	300	300	200	300							

^{*}Red Deer County Specifications require a minimum depth of asphaltic concrete on local roads and primary access lanes with deep utility services of 90mm.

Minimum thicknesses have been designed based on a soaked CBR of 3.1%.

All materials used to construct asphaltic concrete pavement structures should comply with the Mountain View County Standard Specifications (current edition). Test results verifying materials properties should be provided to WATT to confirm compliance with the specifications prior to use and placement on site.

4.11 Concrete Exposure Class

Four sulphate (SO_4) in groundwater samples, mg/L resulted in sulphate concentrations ranging from 521 to 918 mg/L. The test result indicated moderate exposure to concrete in contact with the subsurface soils. Accordingly, concrete placed in contact with the soil

can comprise of Type MS cement. In addition, all concrete must be designed in accordance with CSA A23.1-04 i.e. air-entraining agents are required in freeze/thaw zones. Any imported fill to be placed in contact with concrete should also be tested for water-soluble sulphate content and the above recommendations re-evaluated.

4.12 Seismic Considerations

Seismic design for residential structures is based on the National Building Code of Canada (NBCC). The primary objective of the NBCC earthquake resistant design requirements is to protect the life and safety of the building occupants as the building responds to strong ground shaking. Structures designed in conformance with the NBCC provisions may undergo extensive structural damage during strong ground shaking but should not collapse. Collapse is defined to be a state where occupants can no longer exit the building because of structural failure. This implies that supporting foundations necessary to ensure the building's post-earthquake stability must be protected against excessive movement under strong ground shaking.

Based on the results of the field investigation, it is appropriate to classify the ground conditions at the project site as a Class C Site for seismic site response.

4.13 Frost Protection

Minimum soil cover of 1.5 and 2.0 m should be provided for heated and unheated structures, respectively. Alternatively, rigid insulation may be used to provide equivalent frost protection. Grade beams that do not have adequate soil cover for frost protection should be constructed with a minimum 100 mm void space below the grade beam. It is noted that the frost penetration depths provided above are based on the native, cohesive soils at the project site. Greater frost depths are to be considered if native materials are being replaced, e.g. if granular fill is used to backfill temporary excavations or utility trenches.

Concrete flatwork should be designed with anticipation of some frost heave occurring. Concrete sidewalks should be dowelled into footings or grade beams in threshold areas where heave of concrete panels would obstruct the proper opening of doors and present tripping hazards. As the outside of edge of these panels will still heave, the panel should either be properly jointed to control crack locations or reinforced by placement of adequate reinforcing steel. Alternatively, rigid insulation may be placed below flatwork to prevent frost formation in the underlying subgrade. WATT can provide detailed recommendations for such insulation if required.

4.14 Review, Testing and Field Inspection

WATT should be given the opportunity to review details of the design and specifications related to geotechnical aspects of this project prior to construction. The recommendations provided in this report should be supported by an adequate scope of field review during construction. All construction should be undertaken by an experienced contractor for the foundation and earthworks construction. As a minimum, an adequate scope of field review is as follows:

- Shallow Foundations → Observation of all bearing surfaces prior to fill or concrete placement;
- Floor Slab-on-Grades → Observation of all subgrades prior to fill or concrete placement;
- Engineered Fill Placement → Full-time monitoring and compaction testing during fill placement;

All geotechnical field reviews must be carried out by a qualified geotechnical engineer or technician independent of the contractor. Failure to provide an adequate level of field review for construction of the foundations may be in contradiction of the Alberta Building Code requirements.

5.0 LIMITATIONS

The recommendations provided in this geotechnical evaluation report are based on the interpreted findings encountered within geotechnical boreholes drilled across the project site. The subsurface soil and groundwater conditions observed during borehole drilling are anticipated to be reasonably representative of the project site; however, it should be noted that innate variable conditions may be encountered at the time of various construction aspects. WATT should be notified and given the opportunity to re-evaluate current information, if required, should geotechnical conditions other than those reported herein be identified at any stage of development.

This report has been prepared with accepted geotechnical soil and foundation engineering practices/principles for the project details specified within this report. The recommendations presented herein are subject to an adequate level of inspection during construction and any relevant Alberta Building Code requirements, or their validity may be jeopardized. No other warranty is expressed or implied.

6.0 CLOSURE

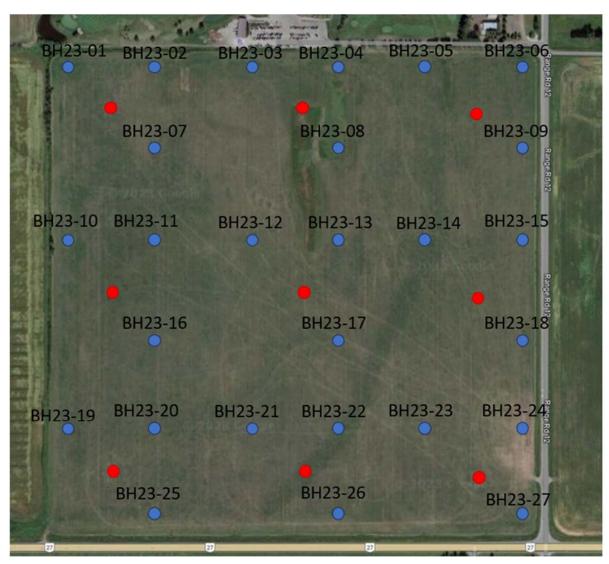
We trust that the information contained in this report meets your present requirements. Please do not hesitate to contact the undersigned with any questions, or should you require further geotechnical input on this project.

Sincerely,

WATT Consulting Group

2024-08-19 ID: 160941

Joel Rombough, P.Eng.


Geotechnical Lead

T 403-462-0718

Netook Crossing SE3-33-1-W5M Mountain View County

APPENDIX A: FIGURE 1 – BOREHOLE LOCATION PLAN

APPENDIX B: BOREHOLE RECORDS

		ting Group								PAGE 1
CLIEN	T 1273	929 Alberta	Ltd.				PROJECT NAME Netook Crossin	ng		
PROJE	ECT NUM	IBER_ 3903					PROJECT LOCATION Netook			
DATE	STARTE	2/12/23	COM	PLETE	D _2/	2/23	GROUND ELEVATION 1018.8 m	HOLE S	IZE _	6" Auger
ORILLI	NG CON	TRACTOR _	Venom Environme	ental Dr	illing		GROUND WATER LEVELS:			
DRILLI	NG METI	HOD Truck	Mounted Auger				AT TIME OF DRILLING			
_OGGI	ED BY _	GS	CHEC	CKED E	3Y _JF	}				
NOTES	S							ev 1016.30 n	n	
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION			WELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC
				ОН		(OH)) Topsoil	1018.55		
						(ML)	Silty sand, trace clay and gravel. Brown, p, compact, low plasticity.	1010.00		
1			MC = 16%	ML		1.50		1017.30		
2	SPT 1	3-5-7 (12)	MC = 16%	CL- ML		▼	ML) Silty clay till, trace sand and gravel. Lo edium plastic, brown, damp, stiff to very sti	ow ff.		
3						3.00		1015.80		
- -	SPT 2	3-6-9 (15)	MC = 16%			(CL- to m	ML) Silty clay till, trace sand and gravel. Lo edium plastic, light grey, damp, very stiff.	W		
4			MC = 16%							
5	SPT 3	3-6-11 (17)	MC = 16%	CL- ML						
6	SPT	3-9-10	MC = 459/							
	4	(19)	MC = 16%			6.45		1012.35	: <u> </u>	
				1	vvvv	0.40	Bottom of hole at 6.45 m.	1012.33		1 · :1

OH 30 20 (OH) Topsoil 1018.80 (CL-ML) Silty day till, trace sand. Low to medium plastic, brown to grey, damp, stiff to very stiff. SPT 3-3-4-6 (10) MC = 16% CL-ML A MC = 14% MC = 13% MC = 13% MC = 15%			/ATT ting Group					V	ÆLL NU	IVIIل	BER BH23-(PAGE 1 OF
Comparison Com									-		
AT END OF DRILLING	DATE STARTED 2/12/23 COMPLETED 2/12/23 DRILLING CONTRACTOR Venom Environmental Drilling						12/23	GROUND ELEVATION 1019 m GROUND WATER LEVELS:	HOLE S	SIZE .	6" Auger
### AFTER DRILLING 2.70 m / Elev 1016.30 m WELL DIAGRAM Casing Type: 1 OH			<u></u>								
OH 020 (OH) Topsoil 1018.80 (CL-ML) Sithy day till, trace sand. Low to medium plastic, brown to grey, damp, stiff to very stiff. MC = 15% MC = 16% A SPT 3-3-4-6 (10) MC = 16% MC = 14% MC = 14% MC = 13% MC = 13%											
OH 30.20 (CH-M) Silty day till, trace sand. Low to medium plastic, brown to grey, damp, stiff to very stiff. SPT 3.3-4-6 (10) MC = 16% MC = 14% MC = 14% MC = 13% MC = 13% MC = 15% MC = 15% MC = 15% MC = 15% MC = 16% MC = 15%	DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION			Casing Top Elev: (m) Casing Type: 1"
plastic, brown to grey, damp, stiff to very stiff. MC = 15% MC = 16% MC = 16% MC = 14% MC = 14% MC = 14% MC = 13%					ОН		10.20		1018.80		
4 MC = 14% SPT 3-6-7 (13) MC = 13%	2 -	1 SPT	3-4-6	MC = 16%			plas	ML) Silty clay till, trace sand. Low to medicic, brown to grey, damp, stiff to very stiff.	ium		
3 (13) MC = 13% SPT 3-5-9 MC = 159/	4				ML						
	-	3 SPT	3-5-9								
- ▲ 1 1012.55 :: : : : : : : : : : : : : : : : : :		4	(14)	IVIC = 15%			6.45		1012.55	:] ::}

DRILLING CONTRACTOR DRILLING METHOD _Truck	Ltd. 03.T01 COM Venom Environme k Mounted Auger CHEC	PLETEI ental Dri	illing 3Y _JR	PROJECT NAME _Netook Crossing PROJECT LOCATION _Netook GROUND ELEVATION _1019.3 m GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	HOLE S	IZE _6" Auger
SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		WELL DIAGRA Casing Top (m) Casing Typ PVC
SPT 3-3-4 (7) SPT 3-5-7 (12) SPT 4-6-9 (15) SPT 4-6-12	MC = 15% MC = 14% MC = 15% MC = 16%	OH CL-ML	(CL- to m) Topsoil ML) Silty clay till, trace sand and gravel. Low edium plastic, brown to grey, damp, stiff to stiff.	1019.10	F0. 14—10. 14

GENERAL BH / TP / WELL NETOOK CROSSING.GPJ GINT STD CANADA LAB.GDT 19/3/24

	ROJECT PATE STA PRILLING PRILLING OGGED I	ENT 1273929 Alberta Ltd. DJECT NUMBER 3903.T01 TE STARTED 1/12/23 COMPLETED 1/12/23 LLING CONTRACTOR Venom Environmental Drilling LLING METHOD Truck Mounted Auger GGED BY GS CHECKED BY JR TES						PROJECT LOCATION Netook GROUND ELEVATION 1020.3 m HOLE SIZE 6" Auger GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING				
OH 0.25 (Cl-ML) Sitty clay till, trace sand. Low to medium plastic, brown to grey, damp, stiff to very stiff. MC = 14% MC = 15% MC = 15% MC = 15% MC = 15% MC = 16%	(m) SAMPLE TYPE	NUMBER	COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		WELL DIAGRAM Casing Top EI (m) Casing Type:		
-\frac{1}{20} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	1 SPT 5 2 SPT 3 5	-8-11 (19) -8-10 (18)	MC = 15% MC = 15% MC = 16%		0.25	(CL-	ML) Silty clay till, trace sand. Low to med	ium			

LIENT 12739 ROJECT NUM ATE STARTED RILLING CONT	BER 3903 1/12/23 RACTOR _ IOD _Truck	Ltd. 3.T01 COM Venom Environme Mounted Auger CHEC	PLETEI ental Dri) <u>1/12/23</u> Illing Y <u>JR</u>	PROJECT LOCATION Netook GROUND ELEVATION 1018.6 m GROUND WATER LEVELS: AT TIME OF DRILLING	_ HOLE SIZE _6" Auger
(m) SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Ele (m) Casing Type: 1
SPT 2 SPT 2 SPT 3 SPT 3	4-7-9 (16) 3-6-7 (13) 4-8-15 (23)	MC = 16% MC = 16% MC = 16%	OH CL-ML	0.30 (CL-) Topsoil ML) Silty clay till, trace sand. Low to medium ic, brown to grey, damp, stiff to very stiff.	1018.30

ATE STARTEI RILLING CON RILLING MET	1BER 3903 D 2/12/23 TRACTOR _ HOD _Truck	3.T01 COM Venom Environme Mounted Auger CHEC	PLETE ental Dr	D <u>2/</u> illing	PROJECT LOCATION Netook GROUND ELEVATION 1018.5 m GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	PROJECT LOCATION Netook GROUND ELEVATION 1018.5 m HOLE SIZE 6" Auger GROUND WATER LEVELS: AT TIME OF DRILLING			
SAMPLE TYPE	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		WELL DIAGRAM Casing Top Ele (m) Casing Type: 1		
3 - SPT 2 - SPT 3 5 - SPT 4	3-4-5 (9) 3-6-9 (15) 3-5-7 (12)	MC = 16% MC = 16% MC = 16%	CL- ML		(OH) Topsoil (CL-ML) Silty clay till, trace sand. Medium plast light brown to grey, damp, stiff to very stiff.	1018.30			

i		VATT Iting Group					VVE		JMBER BH23-0 PAGE 1 OF		
		929 Alberta I									
PROJE	ECT NUN	/IBER_ 3903	3.T01								
							GROUND ELEVATION 1018.1 m	_ HOLE S	6" Auger		
							GROUND WATER LEVELS:				
			CHEC								
NOTES								v 1015.901	II I		
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		WELL DIAGRAM Casing Top Elev: (m) Casing Type: 1" PVC		
				ОН		(OI	H) Topsoil				
]						0.30 (Cl	ML) Silty clay till, trace sand. Low to mediur	1017.80 n			
						pla	stic, dark grey, damp, stiff to very stiff.				
4											
1			MC = 16%								
-											
-											
-\	SPT	3-4-6									
	1 1	(10)									
2			MC = 18%								
-						Ā					
-											
-											
3											
	SPT	3-5-7									
	SPT 2	(12)	MC = 17%	CL-							
				ML							
_											
4			MC = 16%								
_											
-											
-	SPT	4-6-9									
-	3	(15)									
5			MC = 16%								
+											
+											
+											
6											
	SPT	5-8-10									
٦,	4	(18)	MC = 16%			6 45		4044.05			
				1	<u>nnill</u>	6.45	Bottom of hole at 6.45 m.	1011.65	[··ː[

Consulting G	roup			PAGE 1 OF
IENT <u>1273929 Alb</u> OJECT NUMBER			PROJECT NAME Netook Crossing PROJECT LOCATION Netook	
RILLING CONTRACT	OR Venom Environme	ental Drillin	GROUND ELEVATION _1019.4 m HC GROUND WATER LEVELS: AT TIME OF DRILLING	DLE SIZE 6" Auger
OTES			AFTER DRILLING	
SAMPLE TYPE NUMBER BLOW COUNTS	(ALUE) TESTS	U.S.C.S.	MATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Elev: (m) Casing Type: 1" PVC
-		он 💸	(OH) Topsoil 0.30	019.10 PVC
SPT 4-6-7 1 SPT 4-6-7 2 SPT 2 4-6-7)	CL- ML	(CL-ML) Silty clay till, trace sand. Low to medium plastic, brown to grey, damp, stiff to very stiff.	
\$ -\sqrt{\sprt} 4-8-	MC = 15%			
3 (17	MC = 15%			
SPT 4-8-1 4 (18	MC = 16%		5.45	012.95

		VATT Iting Group								PAGE 1	
CLIEN	T 1273	929 Alberta I	Ltd.				PROJECT NAME Netook Crossing				
PROJE	ECT NUM	MBER 3903	3.T01								
DATE	STARTE	D 2/12/23	COM	PLETE	D _2/	2/23	GROUND ELEVATION 1019.6 m	_ HOLE S	IZE _	6" Auger	
DRILLI	NG CON	TRACTOR _	Venom Environme	ental D	rilling		GROUND WATER LEVELS:				
		•	Mounted Auger								
			CHEC								
NOTES	·			1	,		¥ AFTER DRILLING _4.10 m / Elev	/ 1015.50 n	1		
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION			WELL DIAGRAM Casing Top EI (m) Casing Type: PVC	
				ОН		(OH	I) Topsoil	1010.05		PVC	
1						(CL	-ML) Silty clay till, trace sand and gravel. Low	1019.35 V		1.1	
]							nediúm plastic, brown to grey, damp, stiff to vitiff.				
						,				1::1	
1			MC = 10%								
_											
4											
4	SPT	3-4-7									
4	1	(11)									
2			MC = 14%								
4											
-											
+											
3											
	SDT	4-6-7									
	SPT 2	(13)	MC = 12%	CL-						1::1 1::1	
				ML						<u> </u>	
4			MC = 14%			_					
_			1170			$ar{m{\Lambda}}$					
4											
4	SPT	3-5-9									
4	3	(14)								1	
5			MC = 13%								
+										<u> </u>	
-											
+											
6] .::	
U	CDT	0.044		1							
+	SPT 4	3-6-11 (17)	MC = 14%							<u> </u>	
					www	6.45	Bottom of hole at 6.45 m.	1013.15	Ŀ∴ ∐	<u> </u>	

Consult ELIENT 12739 ROJECT NUMI PATE STARTED PRILLING CONT	2/12/23 RACTOR _ OD _Truck	Ltd. 3.T01 COM	PLETE ental Dr	D <u>2/1</u>	PROJECT NAME Netook Crossing PROJECT LOCATION Netook GROUND ELEVATION 1019.5 m GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING Y AFTER DRILLING 4.40 m / Elev 10	
SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC
3 - SPT 2 - 4	3-3-6 (9) 3-5-8 (13)	MC = 16% MC = 16% MC = 16%	OH CL-ML		(OH) Topsoil (CL-ML) Silty clay till, trace sand and gravel. Low to medium plastic, brown to grey, damp, stiff to very stiff.	1019.30

ROJE PATE S PRILLI PRILLI POGGE	T 1273 ECT NUM STARTE NG CON NG MET	TRACTOR _ HOD _Truck	Ltd. 3.T01 COM Venom Environme Mounted Auger CHEC	PLETE ental Di	D <u>2/1</u> ;	PROJECT LOCATION Netook GROUND ELEVATION 1018.9 m GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	PROJECT LOCATION Netook GROUND ELEVATION 1018.9 m HOLE SIZE GROUND WATER LEVELS: AT TIME OF DRILLING			
(m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		WELL DIAGRAM Casing Top Ele (m) Casing Type: 1		
3	SPT 1 SPT 2	3-3-4 (7) 3-6-10 (16)	MC = 14% MC = 15% MC = 15%	CL- ML		(CL-ML) Silty clay till, trace sand. Low to mediu plastic, brown to grey, damp, stiff to very stiff.	1018.70	10.4 -1 0.4		
7.	4	(19)	MC = 14%			_	1012.45			

ROJEC ATE ST RILLING RILLING OGGED	CT NUM CARTEL G CON G METI D BY(D _1/12/23 TRACTOR _ HOD _Truck	3.T01 COM	PLETE ental Di	i D <u>1/</u>	2/23	PROJECT LOCATION Netook GROUND ELEVATION 1018.7 m HOLE SIZE 6" Auger GROUND WATER LEVELS: AT TIME OF DRILLING			
(m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		WELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC	
-				ОН		(CL) Topsoil ML) Silty clay till, trace gravel. Low to medium	1018.45		
1			MC = 15%			plas	tic, brown to grey, damp, stiff to very stiff.			
2	SPT 1	3-3-7 (10)	MC = 16%							
3	SPT 2	3-5-7 (12)	MC = 16%	CL- ML						
4			MC = 15%							
5	SPT 3	4-7-8 (15)	MC = 14%			Ā				
6	SPT 4	5-8-12 (20)	MC = 16%							

LIENT 1 ROJECT ATE STAF RILLING (RILLING B	CONTRACTOR _ METHOD _Truck Y _GS	Ltd. 3.T01 COM Venom Environment	PLETE ental Dr	illing BY JR		PROJECT LOCATION Netook GROUND ELEVATION 1020.4 m GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	IZE 6" Auger	
SAMPLE TYPE	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		WELL DIAGRAM Casing Top Ele (m) Casing Type: 1
3 - - - - - - - - - - - - - - - - - - -	PT 3-4-6 1 (10) PT 3-5-7 2 (12) PT 4-7-9 3 (16)	MC = 13% MC = 12% MC = 12% MC = 12%	ML CL-ML	3.00	(ML) damp	Silty sand, trace clay and gravel. Brown, b, compact, low plasticity. ML) Silty clay till, trace sand and gravel. Low edium plastic, dark grey, damp, very stiff.	1020.20	
	PT 5-8-12 4 (20)	MC = 14%		6.45			1013.95	

CLIENT _ ROJECT PATE STAP PRILLING PRILLING OGGED I	NUMI RTED CONT METH BY G	RACTOR _ OD _Truck	Ltd. 3.T01 COM	PLETE ental Dr	rilling	PROJECT LOCATION Netook GROUND ELEVATION 1019.5 m GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	HOLES	
(m) SAMPLE TYPE	NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		WELL DIAGRAM Casing Top Ele (m) Casing Type: 1
3	SPT 1	4-8-10 (18) 3-7-10 (17) 4-8-9 (17)	MC = 14% MC = 13% MC = 15% MC = 15%	ML CL-ML	0.30	(OH) Topsoil (ML) Silty sand, trace clay and gravel. Brown, damp, compact, low plasticity. (CL-ML) Silty clay till, trace sand and gravel. Low to medium plastic, dark grey, damp, very stiff.	1019.20	
▼ :	SPT 4	5-9-14 (23)	MC = 15%				1013.05	

	WATT sulting Group				V	ELL NC	JIVIE	BER BH23- PAGE 1 0		
LIENT 12	73929 Alberta	Ltd.			PROJECT NAME Netook Cross	ing				
ROJECT N	UMBER 390	3.T01			PROJECT LOCATION Netook					
					GROUND ELEVATION 1019.6 m	HOLE S	IZE _	6" Auger		
				_	GROUND WATER LEVELS:					
		CHE	CKED	BY JR	AT END OF DRILLING V AFTER DRILLING 5.60 m / E					
		1			<u> </u>	1ev 1014.0011				
(m) SAMPLE TYPE NUMBER	တွင်			o						
UEPIH (m) APLE TY UMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION			WELL DIAGRAM		
	P S S S S S S S S S S S S S S S S S S S		U.S	GRA L			_	Casing Top Elev:		
SA								(m) Casing Type: 1" PVC		
			ОН	0.25	(OH) Topsoil	1019.35				
				0.23	(CL-ML) Silty clay till, trace gravel. Low to me	dium] ::		
					plastic, brown to grey, damp, stiff to very stiff.			 		
							: <u> </u>	∃ ∵		
1		MC = 10%						∄ ∭		
_										
SP	T 3-5-6						ĿĖ	<u> </u>		
- SP							l: E			
2		MC = 13%						3)		
-							ŀ·⊫	∄ :}		
-] ::		
-								∄ ::}		
_								∄ ∴∮		
3							l: E	∄ ∰		
SP 2	T 3-6-7 (13)	MC = 14%	CL-					∃		
-	. ,		CL- ML					<u>]</u> ::		
1							k:E	∄ ∷}		
4								∄ ∷]		
·		MC = 14%						₹ ::}		
1] ::		
		-						3 ∷1		
SP 3	T 3-6-11 (17)							1		
5	('')	MC = 14%					K E			
		1410 - 1470						∄ :∄		
]		
-					<u>r</u>]		
-								 		
6							k E	 		
SP SP	T 3-6-11	MC = 14%						3 .1		
▲ 4	(17)	1	1	WWW		1013.15	t. · ˈ⊏	→ . ˙l		

ROJE ATE \$ RILLII RILLII OGGE	T 1273 ECT NUM STARTE NG CON NG MET	TRACTOR _ HOD _Truck	Ltd. 3.T01 COM Venom Environme Mounted Auger CHEC	PLETE ental Dr	rilling	PROJECT LOCATION Netook GROUND ELEVATION 1018.8 m GROUND WATER LEVELS: AT TIME OF DRILLING	HOLE SIZE _6" Auger			
(m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		WELL DIAGRAN Casing Top EI (m) Casing Type: PVC	
1 2 3 3 4 5 5 6	SPT 1	3-6-7 (13) 4-5-8 (13)	MC = 13% MC = 15% MC = 15% MC = 14%	ML	0.30	(ML) damp	Silty sand, trace clay and gravel. Brown, o, compact, low to medium plasticity. WIL) Silty clay till, trace sand and gravel. Low edium plastic, light grey, damp, very stiff.	1018.50		
	SPT 4	5-7-12 (19)	MC = 16%		6.45			1012.35		

	Alberta Ltd R 3903.T0 1/12/23 .CTOR Ve D Truck Mo	01 COM nom Environme ounted Auger CHEC	PLETE ental Dr	illing BY JR	PROJECT LOCATION Netook GROUND ELEVATION 1019.5 m GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING	PROJECT LOCATION Netook GROUND ELEVATION 1019.5 m HOLE SIZE 6 GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING				
SAMPLE TYPE NUMBER	COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		w	ELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC		
3 SPT 5	-8-10 (18) 5-8-9 (17)	MC = 12% MC = 14% MC = 14% MC = 15%	ML CL-ML	0.30	(OH) Topsoil (ML) Silty sand, trace clay. Brown, damp, stiff, low plasticity. (CL-ML) Silty clay till, trace sand and gravel. Low to medium plastic, light grey, damp, very stiff.	1019.20				
SPT 5-	-8-11 (19)	MC = 14%		6.45		1013.05				

CLIENT 1273929 Alberta Ltd. PROJECT NAME Natiock Crossing PROJECT NUMBER 3003.T01 PROJECT NUMBER 3003.T01 PROJECT LOCATION Netock PROJECT LOCATION PROJECT LOCATION Netock PROJECT LOCATION PROJECT LOCATION PROJECT LOCATION Netock PROJECT LOCATION PROJECT LOCATION Netock PROJECT LOCATION PROJECT LOCATION Netock PROJECT LOCATION PROJECT LOCATION Netock PROJECT LOCATION PROJECT			ATT ting Group)							BER BH23 PAGE 1		
ATE STATE OF DIVIDERS 3003.T01	CLIENT	T 1273	929 Alberta	Ltd.				PROJECT NAME Netook Crossi	ng				
SPIT 3-5-17 MC = 11% MC = 14% MC =	PROJE	CT NUM	IBER 3903										
Code by SS	DATE S	STARTE	2/12/23	СОМ	PLETE	D _2/	12/23	GROUND ELEVATION 1018.3 m	HOLE S	IZE _	6" Auger		
Compact Comp	DRILLI	NG CON	TRACTOR _	Venom Environme	ental Dr	illing		GROUND WATER LEVELS:					
AT END OF DRILLING	DRILLII	NG METI	HOD Truck	Mounted Auger				AT TIME OF DRILLING					
Material Description Well Diagram Casing Toping Type Material Description Well Diagram Casing Toping Type Material Description Material Description Well Diagram Casing Toping Type Material Description Mate	LOGGE	ED BY _	GS	CHEC	CKED I	3Y _J	R						
OH 3.25 (OH) Topsoil 1018.05 (ML) Silty sand, some gravel, trace clay. Brown, damp, compact, low plasticity. ML SPT 4-6-9 1 (15) MC = 10% MC = 11% MC = 11% A SPT 3-6-10 MC = 11% SPT 3-6-10 MC = 14%	NOTES	·						AFTER DRILLING 3.90 m / E	lev 1014.40 n	n			
OH 0.25 (CH) Topsoil 1018.05 (ML) Sitry sand, some gravel, trace clay. Brown, damp, compact, low plasticity. MC = 15% MC = 15% MC = 10% MC = 10% MC = 11% MC = 11% MC = 11% SPT 3-6-10 MC = 14% MC = 14% MC = 14%	DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION			WELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC		
(ML) Silty sand, some gravel, trace clay. Brown, damp, compact, low plasticity. MC = 15% MC = 15% MC = 10% SPT					ОН		0.25	DH) Topsoil	1018 05				
MC = 15% MC = 15% MC = 10% SPT							. (N	/IL) Silty sand, some gravel, trace clay. Brown		1:1	1 · · · · · · · · · · · · · · · · · · ·		
MC = 15% MC = 15% SPT							.]	amp, compact, low plasticity.]		
MC = 15% MC = 15% SPT	_												
SPT 4-6-9 (15) MC = 10% MC = 11% SPT 3-5-7 (12) MC = 11% MC = 11% MC = 11% MC = 11% SPT 3-6-10 MC = 14%	1			MC = 15%	ML								
SPT 4-6-9 (15) MC = 10% MC = 11% SPT 3-5-7 (12) MC = 11% MC = 11% MC = 11% MC = 11% SPT 3-6-10 MC = 14%	4						:				<u> </u>		
SPT 4-6-9 (15) MC = 10% MC = 11% SPT 3-5-7 (12) MC = 11% MC = 11% MC = 11% MC = 11% SPT 3-6-10 MC = 14%	4						1 50		1016.80				
3 - SPT 3-5-13 (18) MC = 11%	4	CDT	4.0.0				(0	CL-ML) Silty clay till, trace gravel. Low to med			<u> </u>		
3 - SPT 3-5-7 (12) MC = 11% SPT 3-6-10 MC = 14%	4	4 1					pl	astic, light grey, damp, very stiff.			∄ ∷		
SPT 3-5-7 (12) MC = 11% MC = 11% SPT 3-5-13 (18) MC = 11% MC = 11% SPT 3-6-10 (16) MC = 14%	2			MC = 10%							<u> </u>		
SPT 3-5-7 (12) MC = 11% MC = 11% SPT 3-5-13 (18) MC = 11% MC = 11% SPT 3-6-10 (16) MC = 14%	4										∄ ∷.]		
SPT 3-5-7 (12) MC = 11% MC = 11% SPT 3-5-13 (18) MC = 11% MC = 11% SPT 3-6-10 (16) MC = 14%	4										<u> </u>		
SPT 3-5-7 (12) MC = 11% MC = 11% SPT 3-5-13 (18) MC = 11% MC = 11% SPT 3-6-10 (16) MC = 14%	4												
SPT 3-5-7 (12) MC = 11% MC = 11% SPT 3-5-13 (18) MC = 11% MC = 11% SPT 3-6-10 (16) MC = 14%	4										<u> </u>		
A MC = 11% CL-ML SPT 3-5-13 (18) MC = 11% MC = 11%	3				4								
A MC = 11% CL-ML SPT 3-5-13 (18) MC = 11% MC = 11%	_\	SPT	3-5-7	MC = 11%						l: E	<u> </u>		
MC = 11% SPT 3-5-13 (18) MC = 11% MC = 11% SPT 3-6-10 (16) MC = 14%	-4	2	(12)										
MC = 11% SPT 3-5-13 (18) MC = 11% MC = 11% SPT 3-6-10 (16) MC = 14%	4									ŀĖ	<u> </u>		
MC = 11% SPT 3-5-13 (18) MC = 11% MC = 11% SPT 3-6-10 (16) MC = 14%	_						, T				∄ ∷		
SPT 3-6-10 4 (16) MC = 14%	4			MC = 11%	CL-		<u>*</u>				<u> </u>		
5 3 (18) MC = 11% SPT 3-6-10 4 (16) MC = 14%	4												
5 3 (18) MC = 11% SPT 3-6-10 4 (16) MC = 14%	4										1 ::}		
5 3 (18) MC = 11% SPT 3-6-10 4 (16) MC = 14%	-	SDT	2 5 12										
6 SPT 3-6-10 MC = 14%	4	3	(18)										
- SPT 3-6-10 MC = 14%	5			MC = 11%							₹ :}}		
- SPT 3-6-10 MC = 14%	4												
- SPT 3-6-10 MC = 14%	4												
- SPT 3-6-10 MC = 14%	4										1		
- SPT 3-6-10 MC = 14%	4												
∆ 4 (16) ^{N(C - 1476}	6				4					: <u> </u>	1		
$ \mathbf{A} + \mathbf{A} + \mathbf{A} $				MC = 14%									
→	_	4	(16)				6.45		1011.85				

CLIEN"	Consul	ting Group 929 Alberta L	_td.				_ PROJECT NAME Netook Crossing			PAGE 1 (
PROJE	CT NUM	IBER 3903	.T01									
DATE S	STARTE	2/12/23	COM	PLETE	D _2/	12/23	GROUND ELEVATION 1019.9 m HOLE SIZE 6" Auger					
ORILLII	NG CON	TRACTOR _	Venom Environme	ental Dr	illing		GROUND WATER LEVELS:					
DRILLII	NG MET	HOD Truck	Mounted Auger				AT TIME OF DRILLING					
LOGGE	ED BY _	GS	CHE	CKED I	3Y _J	₹						
NOTES							AFTER DRILLING _5.00 m / Elev	1014.90 n	n			
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION			WELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC		
				ОН		0.20 (OH)) Topsoil	1019.70		PVC		
1			MC = 9%	ML		(ML)	Silty sand, some gravel, trace clay. Brown, p, compact, low plasticity.	1018.40				
2	SPT 1	3-5-7 (12)	MC = 13%			(CL-	ML) Silty clay till, trace gravel. Low to mediur ic, brown to grey, damp, stiff to very stiff.					
- -	SPT 2	4-7-9 (16)	MC = 12%									
4 -			MC = 9%	CL- ML								
- - 5	SPT 3	4-8-10 (18)	MC = 9%			$ar{m{\Lambda}}$						
6												
'	SPT 4	10-16-16 (32)	MC = 6%									
14		(32)				6.45		1013.45	l∷ :E	‡∷. ∮		

			3.T01						
DRILL	ING CON	TRACTOR _	Venom Environme	ental Dr	illing		_ GROUND WATER LEVELS:		
			CHE						
NOTE	S						¥ AFTER DRILLING 5.00 m / Ele	ev 1014.40 m	1
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		WELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC
				ОН		(OH 0.25) Topsoil	1019.15	
 1			MC = 11%	ML		(ML) Silty sand, some gravel, trace clay. Brown p, compact, low plasticity.		
- 2 - -	SPT 1	3-3-7 (10)	MC = 11%			(CL-	ML) Silty clay till, trace sand and gravel. Lo edium plastic, brown, damp, stiff to very stil	w	
3 -	SPT 2	3-5-11 (16)	MC = 17%						
4 -			MC = 12%	CL- ML					
5 - - -	SPT 3	4-6-9 (15)	MC = 13%			Ā			
6	SPT 4	3-8-11 (19)	MC = 19%						

SPT 3-4-5 (9) SPT (13) SPT (13) SPT (13) SPT (13) SPT (13)	.T01 COM Venom Environme Mounted Auger CHEC	PLETEI ental Dri	PROJECT LOCA 1/12/23 GROUND ELEVATION GROUND WATER L AT TIME OF D JR AT END OF D	E Netook Crossing ATION Netook ON 1018.2 m HOLE SIZE 6" Auger EVELS: DRILLING LING
SPT 3-4-5 (9) SPT 4-6-7 2 (13) SPT 3-5-8 3 (13)	TESTS	U.S.C.S.	9 MATERIAL DESCRI	PTION WELL DIAGRAM Casing Top Ele (m) Casing Type: 1' PVC
6 SPT 3-7-8	MC = 15% MC = 16% MC = 16% MC = 16%	CL- ML	(OH) Topsoil (CL-ML) Silty clay till, trace of Medium plastic, brown, damp	1017.95

	T 1273	Iting Group 929 Alberta IBER 3903	Ltd.										
				PLETE	D 1/	12/23		PROJECT LOCATION Netook GROUND ELEVATION 1018.9 m HOLE SIZE 6" Auger					
								GROUND WATER LEVELS:		_			
DRILLI	NG MET	HOD Truck	Mounted Auger					AT TIME OF DRILLING					
			CHE										
NOTES	·							_ AFTER DRILLING					
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION			WELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC		
				ОН		0.20	(OH)	Topsoil	1018.70		PVC		
1			MC = 12%	ML		1.50	(ML) plasti	Silty sand, trace clay. Brown, damp, stiff, low city.					
2	SPT 1	3-3-7 (10)	MC = 16%			1.50	(CL-I	ML) Silty clay till, trace gravel. Low to medium ic, brown to grey, damp, stiff to very stiff.					
3	SPT 2	3-5-10 (15)	MC = 16%										
4			MC = 16%	CL- ML									
5	SPT 3	4-8-9 (17)	MC = 16%										
6	SPT	5-8-13	MC = 17%										
_	4	(21)				6.45		Bottom of hole at 6.45 m.	1012.45] :::]		

			Ltd. 3.T01									
							GROUND ELEVATION 1019.3 m					
							GROUND WATER LEVELS:	_		·		
LOGG	ED BY _	GS	CHEC	CKED I	BY JR		AT END OF DRILLING					
NOTES	3						AFTER DRILLING					
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		\ \ \ \	/ELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC		
				ОН	0.2	(OH	I) Topsoil	1010.05		PVC		
					0.2	(ML) Silty sand, trace clay. Brown, damp, stiff,	1019.05 low	:			
						plas	ticity.					
_									: :昌			
1			MC = 14%	ML								
_									:			
_					1.5	n		1017.80				
_	OPT	4.5.7				(CL	-ML) Silty clay till, trace gravel. Low to med					
_	SPT 1	4-5-7 (12)				plas	tic, brown to grey, damp, stiff to very stiff.					
2			MC = 14%						: : 			
_												
_										; ·] . :]		
_												
_												
3				4								
_	SPT	4-6-9	MC = 15%									
_	2	(15)										
_												
_												
4			MC = 15%	CL- ML								
_												
_												
-	SPT	5-6-8										
-	3	(14)										
5			MC = 15%									
-												
-												
-												
_									[::[]			
6				-								
-	SPT 4	8-8-10 (18)	MC = 15%									
_	A "	(18)			6.4	5		1012.85	[:: <u>:</u>]:			

CLIENT 1273 PROJECT NUM DATE STARTED PRILLING CON	MBER 3903 D 2/12/23 TRACTOR _ HOD _Truck	Ltd. 3.T01 COM Venom Environme	PLETEI ental Dri	GROUND ELEVATION 1018.5 m Ho GROUND WATER LEVELS: AT TIME OF DRILLING	OLE SIZE 6" Auger
OTES				▼ AFTER DRILLING 4.70 m / Elev 101	
(m) SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	MATERIAL DESCRIPTION	WELL DIAGRAN Casing Top El (m) Casing Type: PVC
3 SPT 2 SPT 2 SPT 3	4-6-8 (14) 4-5-6 (11)	MC = 13% MC = 12% MC = 15% MC = 15%	OH CLM	(OH) Topsoil (CL-ML) Silty clay till, trace sand. Medium plastic, brown to grey, damp, stiff to very stiff.	018.20

	T 1273	Iting Group 929 Alberta IBER 3903	Ltd.				PROJECT NAME Netook Crossing PROJECT LOCATION Netook			
DATE S	STARTE	D 1/12/23	СОМ	PLETE	D _1/	2/23	GROUND ELEVATION 1018 m	HOLE S	IZE _	6" Auger
DRILLI	NG CON	TRACTOR _	Venom Environme	ental Dr	illing		GROUND WATER LEVELS:			
			CHE							
NOTES	·						AFTER DRILLING			
DEPTH (m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION			WELL DIAGRAM Casing Top Ele (m) Casing Type: 1 PVC
				ОН		120	OH) Topsoil	1017.80		PVC
- - - 1			MC = 15%	ML		(ML) Silty sand, trace clay. Brown, damp, loose to ompact, low plasticity.	1017.80		
2	SPT 1	3-4-6 (10)	MC = 16%			(t	CL-ML) Silty clay till, trace sand and gravel. Low o medium plastic, dark grey, damp, stiff to very tiff.			
	SPT 2	3-5-8 (13)	MC = 16%							
4			MC = 16%	CL- ML						
5	SPT 3	4-6-8 (14)	MC = 16%							
6	ODT	500								
1,	SPT 4	5-8-9 (17)	MC = 16%			6.45		1011.55		1:1

ATE	STARTE	D 1/12/23		PLETE	D <u>1/1</u>	PROJECT LOCATION Netook GROUND ELEVATION 1019 m GROUND WATER LEVELS:			
OGGI	ED BY _	GS	Mounted Auger CHE	CKED E	BY JR	AT END OF DRILLING			
(m)	SAMPLE TYPE NUMBER	BLOW COUNTS (N VALUE)	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION		W	ELL DIAGRAM Casing Top Ele (m) Casing Type: 1
1			MC = 13%	OH ML		(ML) Silty sand, trace clay and gravel. Light brown, damp, stiff, low plasticity.	1018.75		
2	SPT 1	3-4-6 (10)	MC = 14%			(CL-ML) Silty clay till, trace sand. Low to medium plastic, dark grey, damp, stiff to very stiff.	1017.50		
3 - -	SPT 2	3-6-8 (14)	MC = 16%						
4			MC = 16%	CL- ML					
5 -	SPT 3	4-7-9 (16)	MC = 16%						
6 -	SPT 4	5-8-11 (19)	MC = 15%						

APPENDIX C: LABORATORY TEST RESULTS

Laboratory Analysis Summary Sheet

Project Info: BNG23

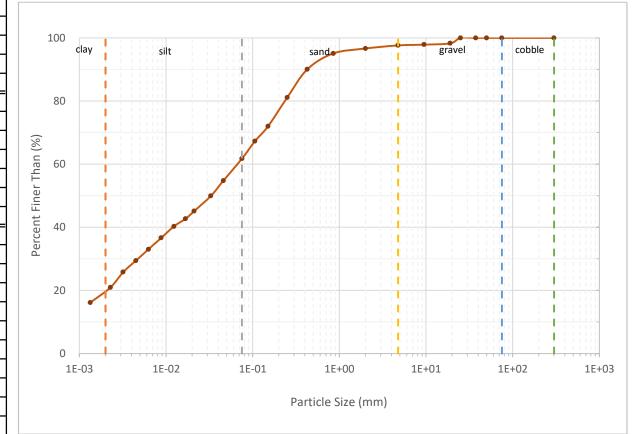
Client: Watt Consulting

^{**} Note: Soil classification is for the whole sample. Soil classification uses the Atterberg Limits results and the percent fines, percent sand and percent gravel as described in ASTM D2487.

			(%)		Partic	le Size A	nalysis	
Borehole ID	Sample ID	Depth(m)	MC as Received (%)	Cobble Size (%) (75-300mm)	Gravel Size (%) (4.75-75mm)	Sand Size (%) (0.075-4.5mm)	Silt Size (%) (0.002-0.075 mm)	Clay Size (%) (<0.002mm)
BNG23-1088	BH23-16	1.0 m	7.1	0.0	2.4	35.9	40.8	20.9
BNG23-1085	BH23-18	2.0 m	13.5	0.0	0.0	31.9	41.5	26.6
BNG23-1085	BH23-24	3.0 m	11.5	0.0	0.5	33.9	41.8	23.8

Particle Size Analysis (ASTM D6913 & D7928)

Project Info: BNG23


Client: Watt Consulting

Sample Info: BNG23-1085 BH23-16 1.0 m

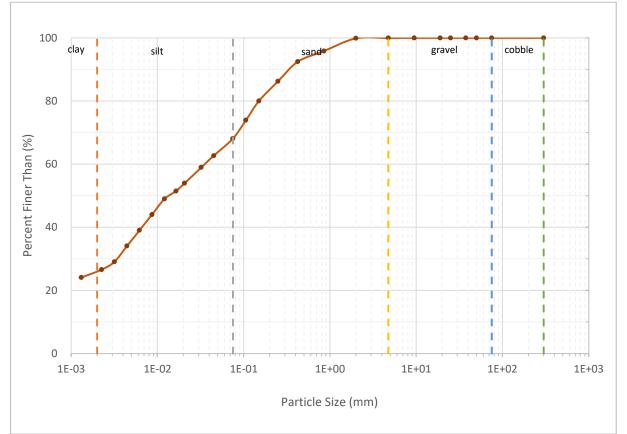
Sumple mjo.	DNG23-1085 DN	
	PARTICLE- SIZE (mm)	PERCENT FINER (%)
	300.000	100.00
	75.000	100.00
GRAVEL	50.000	100.00
	37.500	100.00
	25.000	100.00
	19.000	98.30
	9.500	97.88
	4.750	97.63
	2.000	96.65
SAND	0.850	95.08
	0.425	90.03
	0.250	81.10
	0.150	71.97
	0.106	67.27
	0.075	61.74
	0.0458	54.76
	0.0329	49.93
	0.0211	45.10
E.	0.0168	42.69
E E	0.0123	40.27
RON	0.0088	36.65
HYDROMETER	0.0063	33.03
	0.0045	29.41
	0.0032	25.79
	0.0023	20.96
	0.0013	16.13

Test Results

0.0	2.4	35.9	40.8	20.9
(75-300mm)	(4.75-75mm)	(0.075-4.75mm)	0.002-0.075mm	<0.002mm
Cobbles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)

Particle Size Analysis (ASTM D6913 & D7928)

Project Info: BNG23


Client: Watt Consulting

Sample Info: BNG23-1085 BH23-18 2.0 m

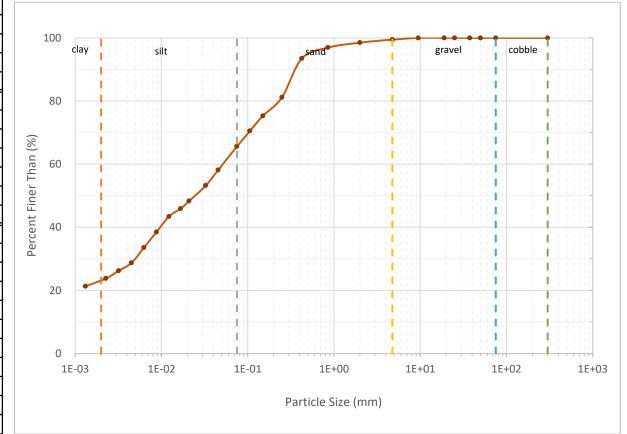
Sumple mjo.	DNG23-1065 DH		
	PARTICLE- SIZE (mm)	PERCENT FINER (%)	
	300.000	100.00	
	75.000	100.00	
GRAVEL	50.000	100.00	
	37.500	100.00	
	25.000	100.00	
	19.000	100.00	
	9.500	100.00	
	4.750	99.97	
	2.000	99.87	
SAND	0.850	95.83	
	0.425	92.47	
	0.250	86.25	
	0.150	80.00	
	0.106	73.90	
	0.075	68.10	
	0.0450	62.68	
	0.0322	58.94	
	0.0206	53.97	
K	0.0164	51.48	
<u> </u>	0.0121	48.99	
SOM	0.0087	44.01	
HYDROMETER	0.0062	39.03	
	0.0044	34.05	
	0.0032	29.07	
	0.0023	26.58	
	0.0013	24.10	

Test Results

Cobbles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
(75-300mm)	(4.75-75mm)	(0.075-4.75mm)	0.002-0.075mm	<0.002mm
0.0	0.0	31.9	41.5	26.6

Particle Size Analysis (ASTM D6913 & D7928)

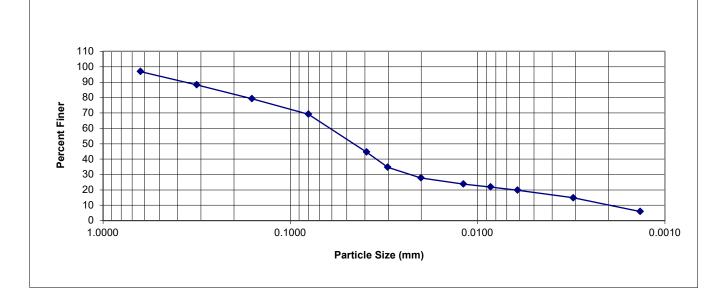
Project Info: BNG23


Client: Watt Consulting

Sample Info: BNG23-1085 BH23-24 3.0 m

Sumple mjo.	DNG23-1003 DH	
	PARTICLE- SIZE (mm)	PERCENT FINER (%)
	300.000	100.00
	75.000	100.00
	50.000	100.00
3RAVEL	37.500	100.00
3RA	25.000	100.00
GR	19.000	100.00
	9.500	100.00
	4.750	99.47
	2.000	98.49
SAND	0.850	96.92
	0.425	93.51
	0.250	81.19
	0.150	75.29
	0.106	70.51
	0.075	65.60
	0.0455	58.13
	0.0326	53.22
	0.0209	48.31
œ	0.0166	45.86
H	0.0122	43.40
HYDROMETER	0.0088	38.49
	0.0063	33.58
Í	0.0045	28.67
	0.0032	26.22
	0.0023	23.76
	0.0013	21.31

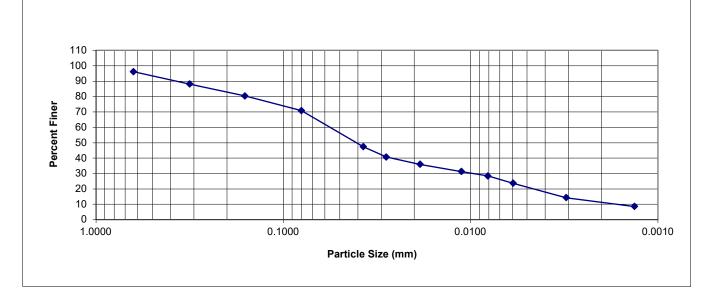
Test Results


Cobbles (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)
(75-300mm)	(4.75-75mm)	(0.075-4.75mm)	0.002-0.075mm	<0.002mm
0.0	0.5	33.9	41.8	23.8

AR Geotechnical Engineering Ltd

Lab Technician:	Jemal	Date:	Jan 18/2024	
Air Dry weight of Spec. (g):	105	Corrected Sa	ample Wt.	99.8
Specific Gravity(Gs):	2.7	Gs correctio	n factor:	0.99
Composite Correction:	5			
k-factor	0.01312	CLIENT:	WATT Consultant	
Hydrometer type:	152 - H	Sample	2023-08 @10'	
Pan No.:	Е			
Wt. of Pan + Air Dried (g):	105.3		ASTM D422	
Wt. of Pan + Oven Dried (g):	100.1		LIQUID LIMIT	
Wt. of Water (g):	5.2		PLASTIC INDEX	
Wt. of Pan (g):	8.2		GRAVEL	0.45
Wt. of Oven Dried (g):	91.9		SAND (0.074mm-4.75mm)	34
Hygroscopic Moisture (%):	5.66		SILT (0.074mm-0.005mm)	48
Test Data:		_	CLAY(<0.005mm)	18

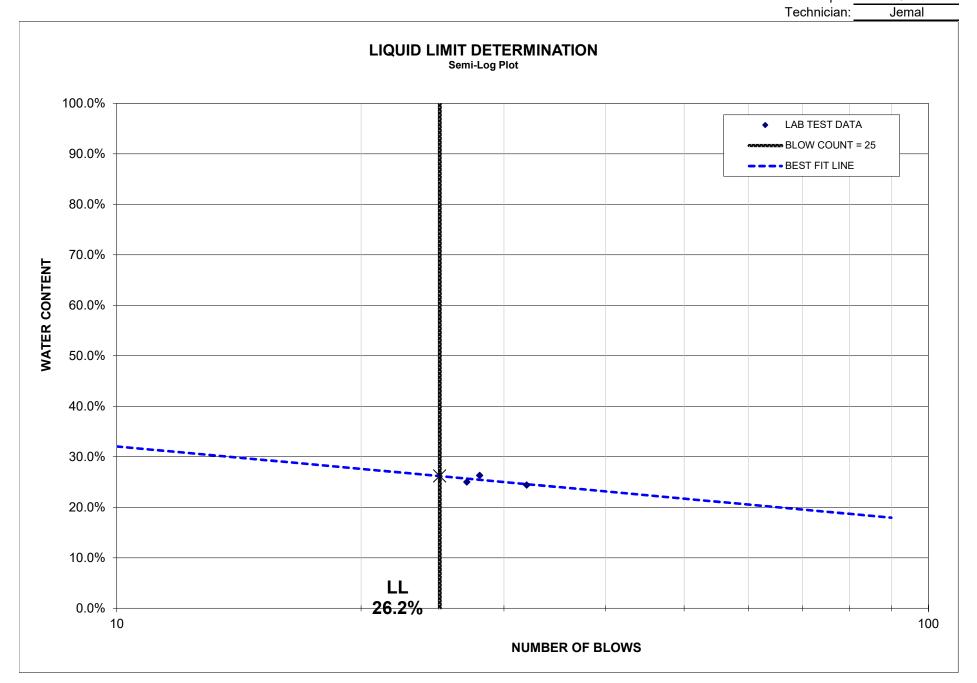
103t Butu.			CLAT(<0.003IIIII)		
Time (1st Four are Sieves)	Hydrometer	Adj. Hydrometer	Effective	Percent	D
(min)	Reading	Reading	Depth, L (cm)	Finer	(mm)
630µm				96.89	0.6300
315µm				88.28	0.3150
160µm				79.26	0.1600
80µm				69.24	0.0800
1	50	45	8.9	44.63	0.0392
2	40	35	10.6	34.71	0.0301
5	33	28	11.7	27.77	0.0201
15	29	24	12.4	23.80	0.0119
30	27	22	12.7	21.82	0.0085
60	25	20	13.0	19.84	0.0061
250	20	15	13.8	14.88	0.0031
1440	11	6	15.3	5.95	0.0014



AR Geotechnical Engineering Ltd

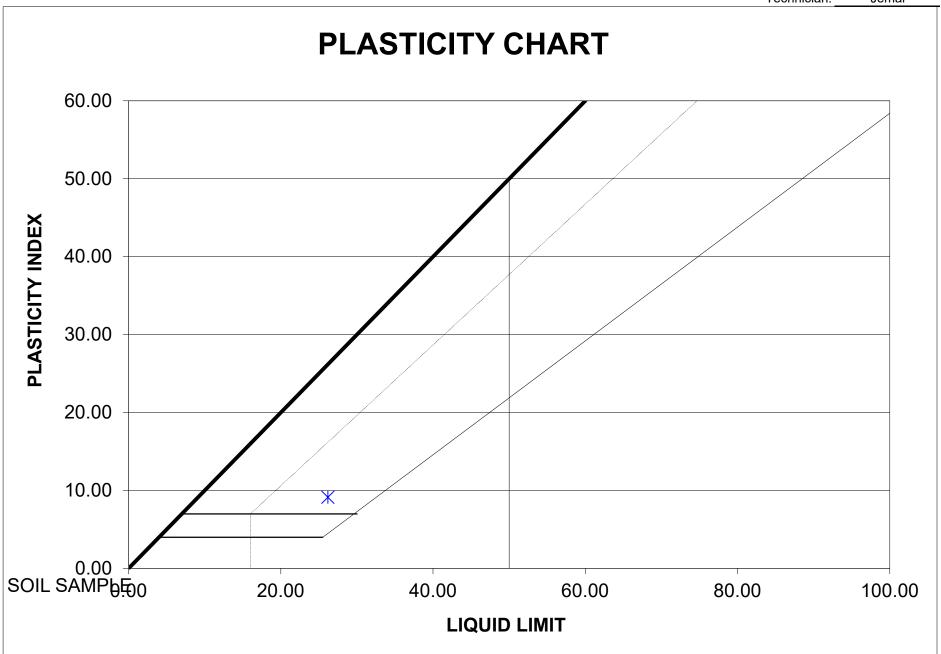
Lab Technician:	Jemal	Date:	Jan 18/2024	
Air Dry weight of Spec. (g):	110	Corrected Sam	ple Wt.	104.6
Specific Gravity(Gs):	2.7	Gs correction fa	actor:	0.99
Composite Correction:	5			
k-factor	0.01312	CLIENT:	WATT Consultant	
Hydrometer type:	152 - H	Sample	2023-11 @10'	
Pan No.:	Е			_
Wt. of Pan + Air Dried (g):	110.3		ASTM D422	
Wt. of Pan + Oven Dried (g):	104.9		LIQUID LIMIT	
Wt. of Water (g):	5.4		PLASTIC INDEX	
Wt. of Pan (g):	8.2		GRAVEL	1.5
Wt. of Oven Dried (g):	96.7		SAND (0.074mm-4.75mm)	31
Hygroscopic Moisture (%):	5.58		SILT (0.074mm-0.005mm)	47
Test Data:		_	CLAY(<0.005mm)	21

Test Data:


			()		
Time (1st Four are Sieves)	Hydrometer	Adj. Hydrometer	Effective	Percent	D
(min)	Reading	Reading	Depth, L (cm)	Finer	(mm)
630µm				96.18	0.6300
315µm				88.05	0.3150
160µm				80.40	0.1600
80µm				70.85	0.0800
1	55	50	8.1	47.32	0.0373
2	48	43	9.2	40.69	0.0282
5	43	38	10.1	35.96	0.0186
15	38	33	10.9	31.23	0.0112
30	35	30	11.4	28.39	0.0081
60	30	25	12.2	23.66	0.0059
250	20	15	13.8	14.19	0.0031
1440	14	9	14.8	8.52	0.0013

ATTERBERG LIMITS

PROJECT NUMBER: WATT Subdivision							
HOLE NUMBER:	ВН	# 3	DATE: 06		an-24		
DEPTH:	6	ft	TECHNICIAN: Jem		nal		
SAMPLE DESCRIPTION:			Clay and silt				
	LIQU	ID LIMIT (2 TE	ESTS MINIMUM) AST	ГМ D 4318			
TEST NUMBER	1	2	3				
TIN NUMBER	16	Α	J				
NUMBER OF BLOWS (LIQUID LIMIT)	32	27	28				
WET WEIGHT	39.2	31.7	31.6				
DRY WEIGHT	34.3	28.2	28				
MOISTURE	4.9	3.5	3.6				
TIN WEIGHT	14.2	14.2	14.3				
SOIL WEIGHT	20.1	14	13.7				
WATER CONTENT	24.4%	25.0%	26.3%				
	PLASTIC LIMIT ASTM D 4318						
TEST NUMBER	1	2					
TIN NUMBER	N	L					
WET WEIGHT	24.5	27.1					
DRY WEIGHT	23	25.2					
MOISTURE	1.5	1.9					
TIN WEIGHT	14.2	14.1					
SOIL WEIGHT	8.8	11.1					
WATER CONTENT	17.0%	17.1%					
	NATURA	AL WATER	CONTENT	ASTM D 4959			
TEST NUMBER							
TIN NUMBER							
WET WEIGHT							
DRY WEIGHT							
MOISTURE							
TIN WEIGHT							
SOIL WEIGHT							
NATURAL WATER CONTENT							
LIQUID LIMIT	26.	2%	PLASTIC LIMIT	17.	1%		
PLASTICITY INDEX	9.1	%	NATURAL WATER CONTENT				


Project Number: WATT Subdivision
Date: 6-Jan-24
Hole Number BH # 3
Depth: 6 ft

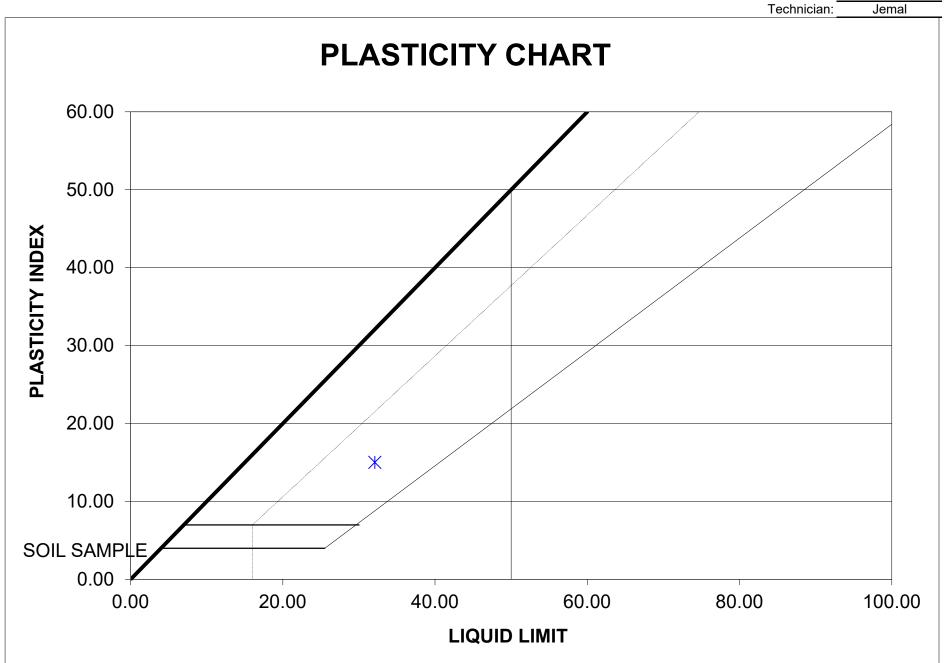
Project Number: WATT Subdivision

Date: 6-Jan-24
Hole Number BH # 3

Depth: 6 ft
Technician: Jemal

ATTERBERG LIMITS

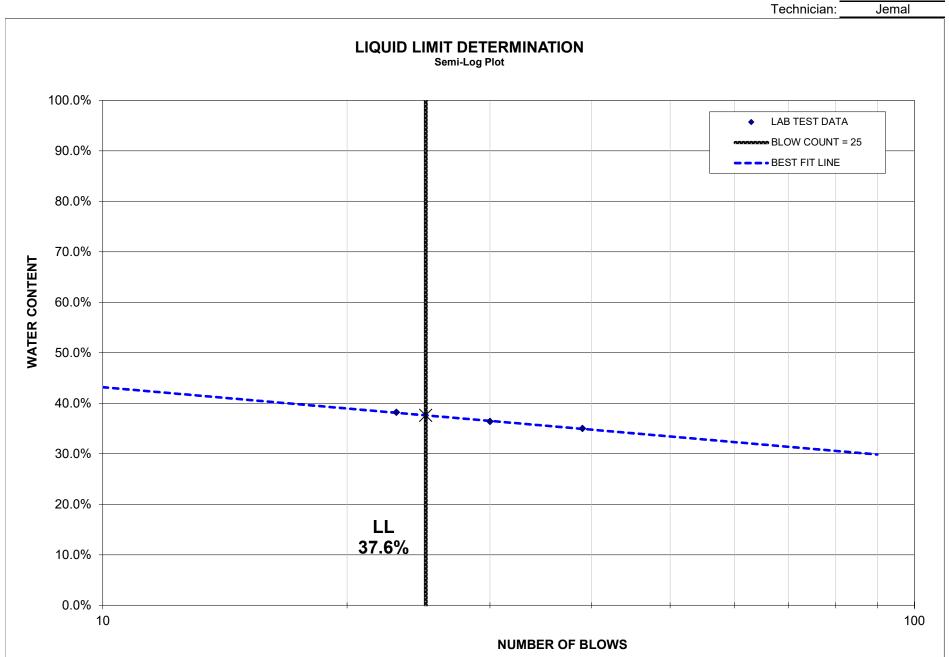
PROJECT NUMBER: WATT Subdivision							
HOLE NUMBER:	ВН	# 4	DATE:	06-Ja	an-24		
DEPTH:	6	ft	TECHNICIAN:	 Jemal			
SAMPLE DESCRIPTION:			Clay and silt				
LIQUID LIMIT (2 TESTS MINIMUM) ASTM D 4318							
TEST NUMBER	1	2	3				
TIN NUMBER	2	E	С				
NUMBER OF BLOWS (LIQUID LIMIT)	34	29	24				
WET WEIGHT	33.7	31.7	31.5				
DRY WEIGHT	29.1	27.6	27.2				
MOISTURE	4.6	4.1	4.3				
TIN WEIGHT	14.2	14.2	14				
SOIL WEIGHT	14.9	13.4	13.2				
WATER CONTENT	30.9%	30.6%	32.6%				
	PLASTIC LIMIT ASTM D 4318						
TEST NUMBER	1	2					
TIN NUMBER	17	A2					
WET WEIGHT	24.8	26.2					
DRY WEIGHT	23.3	24.4					
MOISTURE	1.5	1.8					
TIN WEIGHT	14.2	14.2					
SOIL WEIGHT	9.1	10.2					
WATER CONTENT	16.5%	17.6%					
	NATUR/	AL WATER	CONTENT	ASTM D 4959			
TEST NUMBER							
TIN NUMBER							
WET WEIGHT							
DRY WEIGHT							
MOISTURE							
TIN WEIGHT							
SOIL WEIGHT							
NATURAL WATER CONTENT							
LIQUID LIMIT	32.	1%	PLASTIC LIMIT	17.	1%		
PLASTICITY INDEX	15.	0%	NATURAL WATER CONTENT				


Project Number: WATT Subdivision
Date: 6-Jan-24
Hole Number BH # 4
Depth: 6 ft

Project Number: WATT Subdivision

Date: 6-Jan-24
Hole Number BH # 4

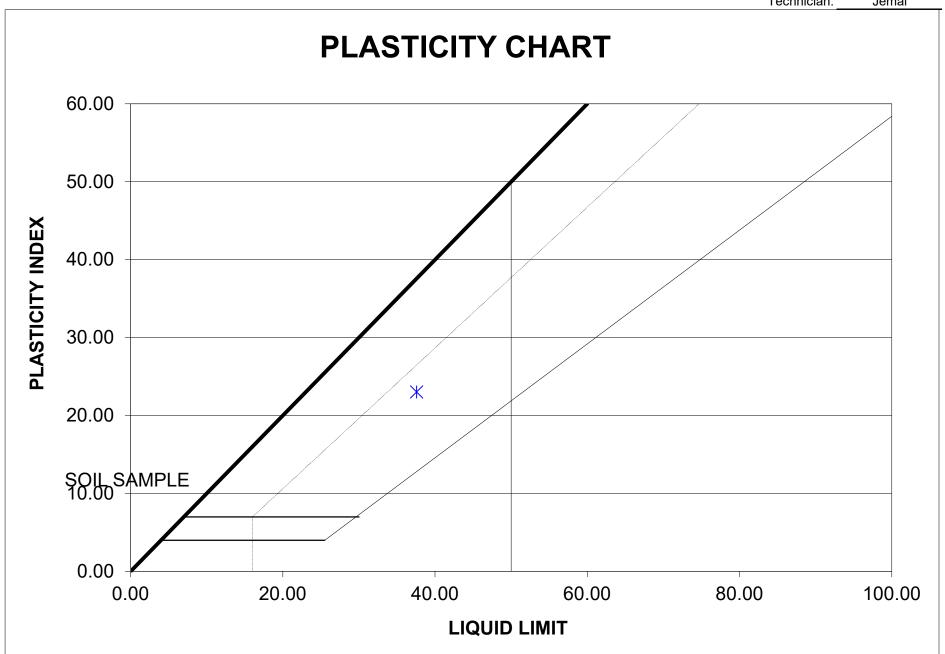
Depth: 6 ft
nnician: Jemal



ATTERBERG LIMITS PROJECT NUMBER: WATT Subdivision

			PROJECT NUMBER:	WATT Subdivision	
HOLE NUMBER:	HOLE NUMBER: BH # 6 DEPTH: 6 ft		DATE:	18-Dec-23 Jemal	
DEPTH:			TECHNICIAN:		
SAMPLE DESCRIPTION:			Clay and silt		
	LIQU	ID LIMIT (2 TI	ESTS MINIMUM) ASTI	M D 4318	
TEST NUMBER	1	2	3		
TIN NUMBER	Т	15	A6		
NUMBER OF BLOWS (LIQUID LIMIT)	39	30	23		
WET WEIGHT	35.4	35.1	32.3		
DRY WEIGHT	29.9	29.5	27.3		
MOISTURE	5.5	5.6	5		
TIN WEIGHT	14.2	14.1	14.2		
SOIL WEIGHT	15.7	15.4	13.1		
WATER CONTENT	35.0%	36.4%	38.2%		
	F	PLASTIC LI	MIT ASTM D 4318	}	
TEST NUMBER	1	2			
TIN NUMBER	F	S			
WET WEIGHT	24.3	24.2			
DRY WEIGHT	23	22.9			
MOISTURE	1.3	1.3			
TIN WEIGHT	13.9	14.2			
SOIL WEIGHT	9.1	8.7			
WATER CONTENT	14.3%	14.9%			
	NATURA	AL WATER	CONTENT	ASTM D 4959	
TEST NUMBER					
TIN NUMBER					
WET WEIGHT					
DRY WEIGHT					
MOISTURE					
TIN WEIGHT					
SOIL WEIGHT					
NATURAL WATER CONTENT					
LIQUID LIMIT	37.	6%	PLASTIC LIMIT	14.6%	
PLASTICITY INDEX	23.	0%	NATURAL WATER CONTENT		

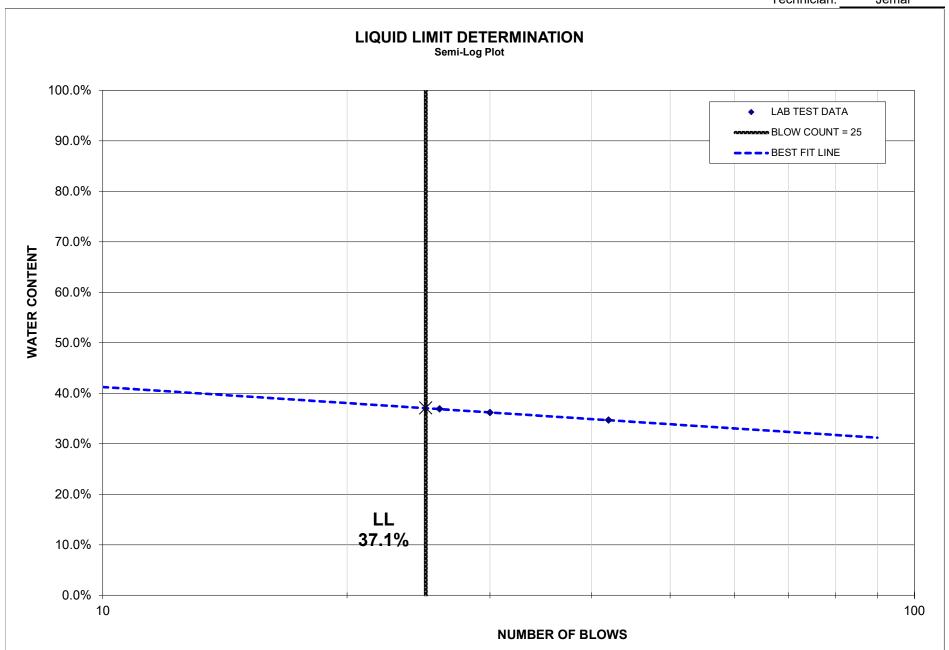
Project Number: WATT Subdivision
Date: 18-Dec-23
Hole Number BH # 6


Depth: 6 ft

Project Number: WATT Subdivision

Date: 18-Dec-23
Hole Number BH # 6

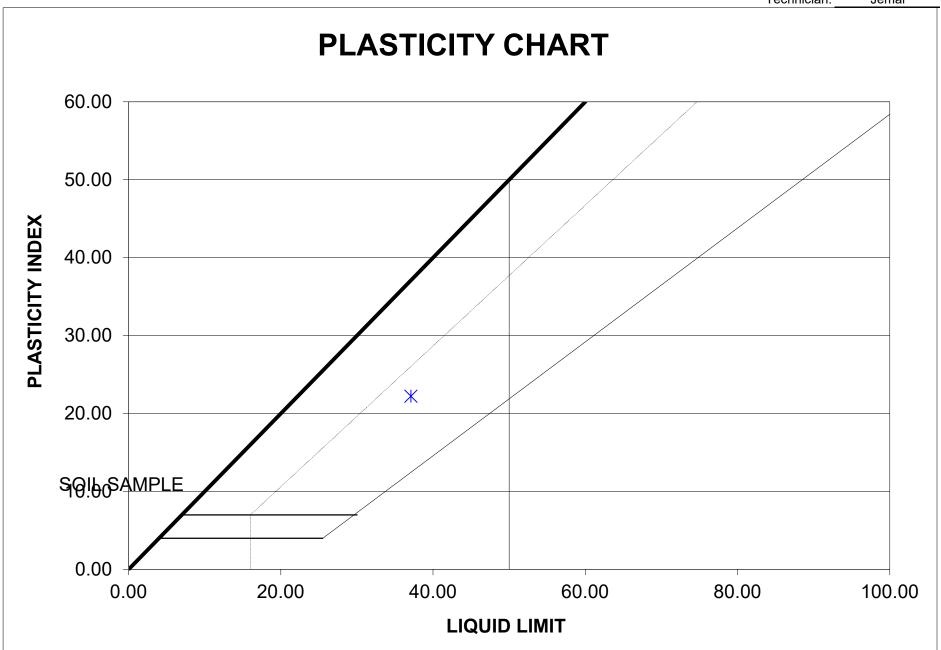
Depth: 6 ft
Technician: Jemal



ATTERBERG LIMITS WATT Subdivision PROJECT NUMBER: BH # 11 HOLE NUMBER: DATE: 18-Dec-23 DEPTH: 6 ft TECHNICIAN: Jemal Clay and silt SAMPLE DESCRIPTION: LIQUID LIMIT (2 TESTS MINIMUM) ASTM D 4318 TEST NUMBER 1 2 3 TIN NUMBER **A8** 6 Α7 NUMBER OF BLOWS 42 30 26 (LIQUID LIMIT) 33.8 33.3 33.6 WET WEIGHT DRY WEIGHT 28.7 28.2 28.4 MOISTURE 5.1 5.1 5.2 TIN WEIGHT 14 14.1 14.3 14.7 14.1 14.1 SOIL WEIGHT WATER CONTENT 34.7% 36.2% 36.9% PLASTIC LIMIT **ASTM D 4318** TEST NUMBER 1 16 11 TIN NUMBER WET WEIGHT 24.9 25 DRY WEIGHT 23.5 23.6

MOISTURE	1.4	1.4			
TIN WEIGHT	14.2	14.1			
SOIL WEIGHT	9.3	9.5			
WATER CONTENT	15.1%	14.7%			
	NATURA	AL WATER	CONTENT	ASTM D 4959	
TEST NUMBER					
TIN NUMBER					
WET WEIGHT					
DRY WEIGHT					
MOISTURE					
TIN WEIGHT					
SOIL WEIGHT					
NATURAL WATER CONTENT					
LIQUID LIMIT	37.	1%	PLASTIC LIMIT	14.	9%
PLASTICITY INDEX	22.	2%	NATURAL WATER CONTENT		,

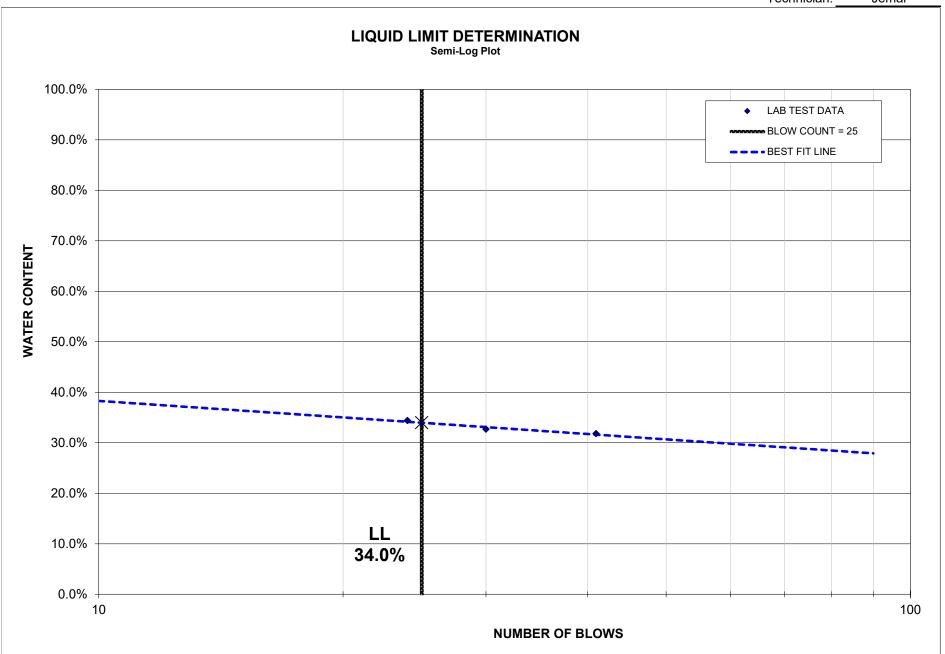
Project Number: WATT Subdivision
Date: 18-Dec-23
Hole Number BH # 11


Depth: 6 ft
Technician: Jemal

Project Number: WATT Subdivision

Date: 18-Dec-23
Hole Number BH # 11

Depth: 6 ft
Technician: Jemal

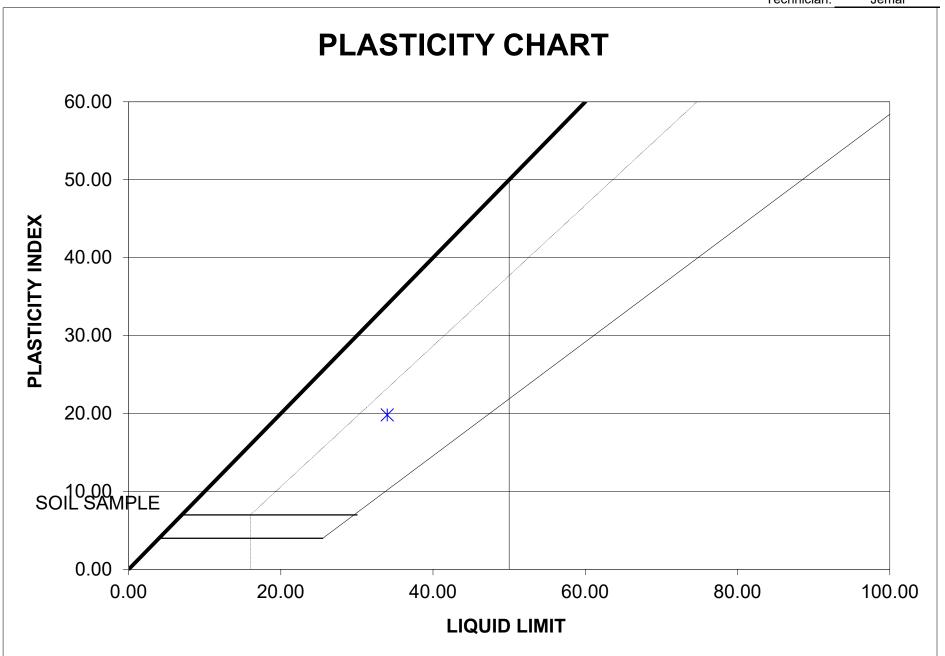


ATTERBERG LIMITS PROJECT NUMBER: WATT Subdivision BH # 15 HOLE NUMBER: DATE: 18-Dec-23 DEPTH: 6 ft TECHNICIAN: Jemal Clay and silt SAMPLE DESCRIPTION: LIQUID LIMIT (2 TESTS MINIMUM) ASTM D 4318 TEST NUMBER 1 2 3 С TIN NUMBER D В NUMBER OF BLOWS 41 30 24 (LIQUID LIMIT) 34.1 36.2 35.4 WET WEIGHT DRY WEIGHT 29.3 30.8 30 MOISTURE 4.8 5.4 5.4 TIN WEIGHT 14.2 14.3 14.3 15.1 16.5 15.7 SOIL WEIGHT WATER CONTENT 31.8% 32.7% 34.4% PLASTIC LIMIT **ASTM D 4318** TEST NUMBER 1 A2 D2 TIN NUMBER WET WEIGHT 23.4 24.2 DRY WEIGHT 22.2 23 1.2 1.2 MOISTURE TIN WEIGHT 14.1 14.2 8.8 SOIL WEIGHT 8.1 14.8% 13.6% WATER CONTENT

NATURAL WATER CONTENT ASTM D 4959								
TEST NUMBER								
TIN NUMBER								
WET WEIGHT								
DRY WEIGHT								
MOISTURE								
TIN WEIGHT								
SOIL WEIGHT								
NATURAL WATER CONTENT								
LIQUID LIMIT	34.	0%	PLASTIC LIMIT	14.	2%			
PLASTICITY INDEX	19.	8%	NATURAL WATER CONTENT					

Project Number: WATT Subdivision
Date: 18-Dec-23
Hole Number BH # 15
Depth: 6 ft

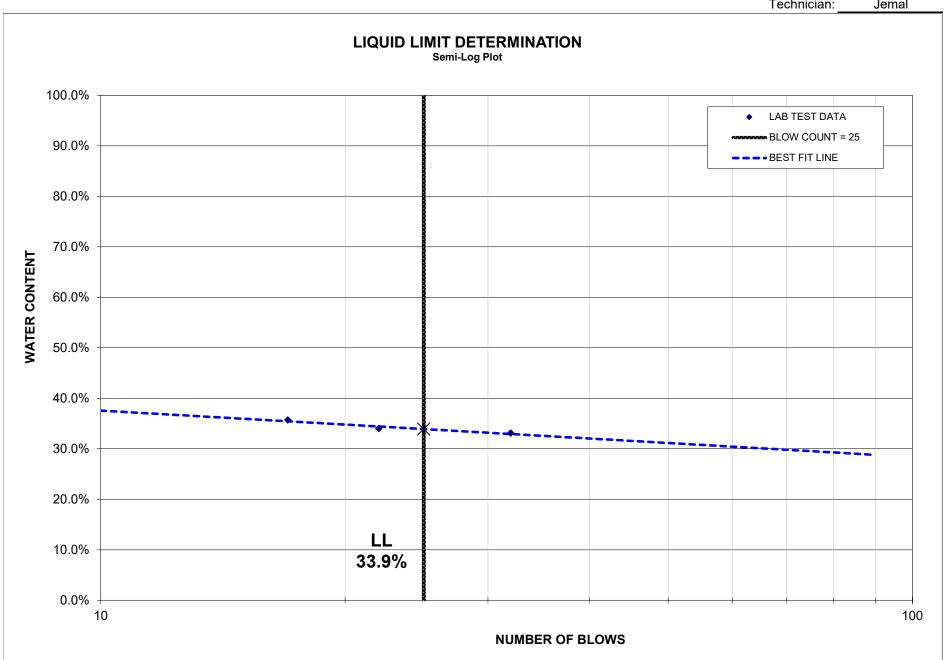
Technician: Jemal



Project Number: WATT Subdivision

Date: 18-Dec-23 umber BH # 15

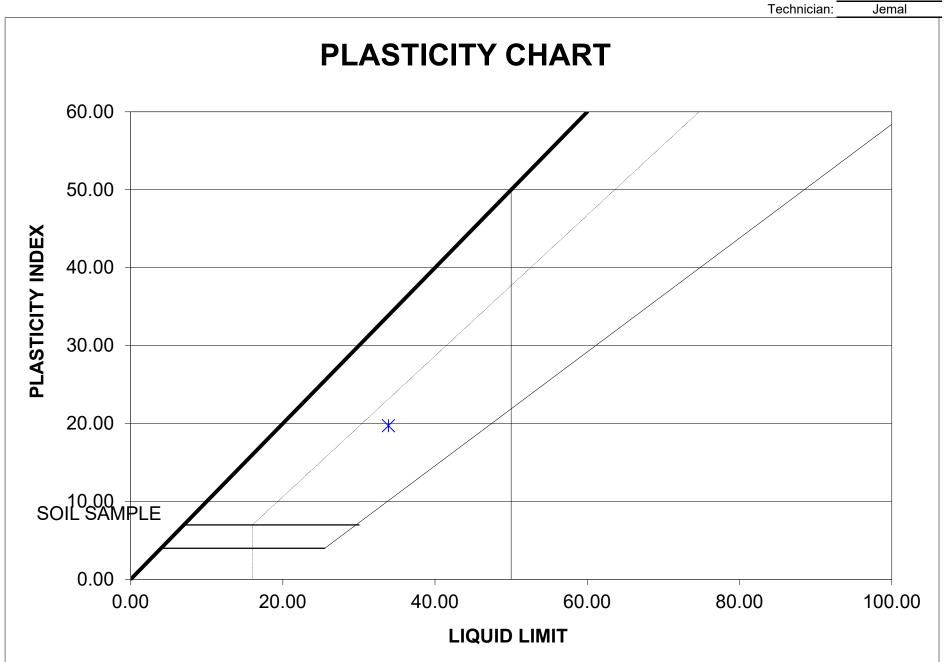
Hole Number BH # 1
Depth: 6 ft


ATTERBERG LIMITS

			PROJECT NUMBER:	WATT Subdivision							
HOLE NUMBER:	BH # 19		DATE:	18-De	ec-23						
DEPTH:	6 ft		TECHNICIAN:	Jer	nal						
SAMPLE DESCRIPTION:			Clay and silt								
	LIQUID LIMIT (2 TESTS MINIMUM) ASTM D 4318										
TEST NUMBER	1	2	3								
TIN NUMBER	С	A9	A4								
NUMBER OF BLOWS (LIQUID LIMIT)	32	22	17								
WET WEIGHT	35.1	34.1	33.4								
DRY WEIGHT	29.9	29	28.3								
MOISTURE	5.2	5.1	5.1								
TIN WEIGHT	14.2	14	14								
SOIL WEIGHT	15.7	15	14.3								
WATER CONTENT	33.1%	34.0%	35.7%								
PLASTIC LIMIT ASTM D 4318											
TEST NUMBER	1	2									
TIN NUMBER	16	11									
WET WEIGHT	24.9	25.4									
DRY WEIGHT	23.6	24									
MOISTURE	1.3	1.4									
TIN WEIGHT	14.1	14.5									
SOIL WEIGHT	9.5	9.5									
WATER CONTENT	13.7%	14.7%									
	NATURA	AL WATER	CONTENT	ASTM D 4959							
TEST NUMBER											
TIN NUMBER											
WET WEIGHT											
DRY WEIGHT											
MOISTURE											
TIN WEIGHT											
SOIL WEIGHT											
NATURAL WATER CONTENT											
LIQUID LIMIT	33.	9%	PLASTIC LIMIT	14.	2%						
PLASTICITY INDEX	19.	7%	NATURAL WATER CONTENT		_						

Project Number: WATT Subdivision 18-Dec-23 Date:

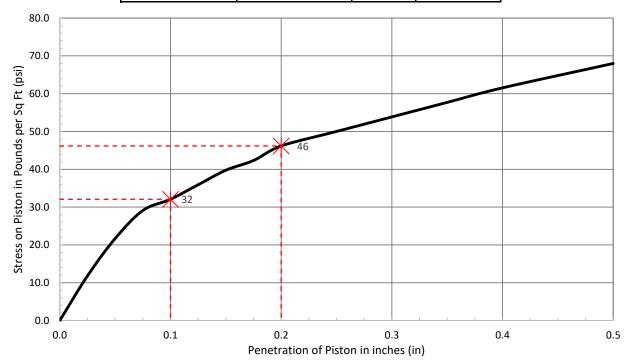
BH # 19 Hole Number Depth: 6 ft


Technician: Jemal

Project Number: WATT Subdivision

Date: 18-Dec-23
Hole Number BH # 19

Depth: 6 ft


California Bearing Ratio ASTM D1883-16, Soaking Method

WSP Canada Inc. 1003 53rd Ave NE Calgary AB T2E 6X9

Type of Preparation Standard ASTM D698		Sample Preparation	Soaked
Maximum Dry Density	1892 kg/m³	Soaking time	96 hrs
Optimum Moisture Content	13.3 %	Top 1 Inch Soaked Moisture	17.3 %
Compacted Dry Density	1880 kg/m ³	Bottom 1 Inch Soaked Moisture	16.6 %
Compacted Moisture Content	15.5 %	Average Soaked Moisture	16.5 %
Percent Compaction	99.4 %	Mass of Surcharge	13.6 kg

Corrected	Standard Load of	Corrected	CBR
Penetration (in.)	Crushed Stone (psi)	Load (psi)	(%)
0.100	1000	32	3.2
0.200	1500	46	3.1

Client:	Watt	Project:	Netook Cross	sing
			Site composite sample	e at 1.0 to 1.5
Project No:	CA18784.8400_3903.T01	Site Location:	m depth	
Date:	February 26, 2024	Request No:	-	
Techn	nologist: JCS_	Reviewed By:	НМ	
Soil Des	cription: Silty Clay trace Organic			
Liquid Limit	- Plastic Limit	Plasticity Index	Sw	vell <u>0.04%</u>

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results will be provided only upon written request. If you are not the Intended recipient please notify us by telephone as soon as possible and either return the message by post or destroy it. If you are not the intended recipient, any use by you of its contents is prohibited.

Moisture / Density Relationship

Report Date: March 06, 2024 Amend Date: March 06, 2024

Client

Watt Consulting Group Address: 3016 5 Ave NE Calgary, AB T2A 6K4

Attention: Joel Rombough

PO Number:

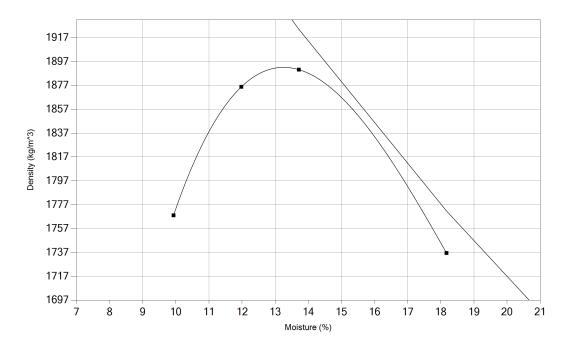
Name:

Sample Date: 2/22/2024 by Renato Lumawig

Composite Sample @ 1.0 to 1.5 m depth Source:

Project

Name: (CA18784.8400) Netook Crossing (3903.T01)


Address: Calgary, AB

Phase: Task:

Manager: Hamdan Marwasi

Lab/Ref. #: NS666808

Description: Silty Clay trace organic

Moisture Density Relationship: (ASTM D698-12) Method: B Preparation Method: Dry Rammer Type: Mechanical

Maximum Density (kg/m^3): 1892 Optimum Moisture (%): 13.3

Remarks:

Distribution:

Reviewed By: Hamdan Marwasi

Reporting of these test results constitutes a testing service only.

WSP E&I Canada Ltd. - 1003 53rd Avenue NE - Calgary, AB - T2E 6X9

AR Geotechnical Engineering

Sulphate Test

http://www.argeoeng.com

CLIENT NAME: Watt Consulting

ATTENTION TO: Ayoub Ramadan

SAMPLING SITE: Olds Subdivision			SAMPLED BY: Getu					
			S	oil Analysi	s - Sulfate			
DATE RECEIVED: 2024-01-21							DATE REPORTED: 2024-01-29	
		SAMPLE DESCRIPTION: SAMPLE TYPE:	BH23-25 (GB-1m) Soil	BH23-16 (GB-2m) Soil	BH23-08 (GB-2m) Soil	BH23-08 (GB-2m) Soil		
Parameter	Unit	DATE SAMPLED:	2024-01-21 5608878	2024-01-21 5608880	2024-01-21 5608882	2024-01-21 5608884		
Saturation Percentage	%		32	38	36	33		
Sulfate (SO4-S), Soluble	mg/L		918	521	625	890		
Sulfur (as Sulfate), Soluble (meq/L)	meq/L		19.1	10.8	14.5	18.8		

AR Geotechnical Engineering

Tech	nician	ı: Jemal	/Haile
			,

	_					
BH # 1						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	A7	A8	A9	B1	B2	В3
Wt. Sample Wet + Tare (g)	259.9	287.1	285.3	262.9	286.3	268.8
Wt. Sample Dry + Tare (g)	224.1	247.9	247.2	228.1	248.0	231.9
Wt. Water (g)	35.8	39.2	38.1	34.8	38.3	36.9
Tare Container (g)	4.1	4.1	4.2	4.4	4.3	4.3
Wt. Dry Sample (g)	220.0	243.8	243.0	223.7	243.7	227.6
Moist Content	16.3%	16.1%	15.7%	15.6%	15.7%	16.2%
BH # 2]					
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	36.0	29.0	103.0	12.0	19.0	37.0
Wt. Sample Wet + Tare (g)	250.6	297.8	240.8	249.2	222.8	242.6
Wt. Sample Dry + Tare (g)	218.7	258.3	208.9	218.8	197.3	210.7
Wt. Water (g)	31.9	39.5	31.9	30.4	25.5	31.9
Tare Container (g)	4.4	4.4	4.4	4.4	4.4	4.4
Wt. Dry Sample (g)	214.3	253.9	204.5	214.4	192.9	206.3
Moist Content	14.9%	15.6%	15.6%	14.2%	13.2%	15%
	_					
BH # 3						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	33.0	41.0	13.0	44.0	20.0	22.0
Wt. Sample Wet + Tare (g)	298.2	286.8	261.5	283.3	271.0	276.9
Wt. Sample Dry + Tare (g)	259.7	251.6	227.5	243.6	233.8	238.9
Wt. Water (g)	38.5	35.2	34.0	39.7	37.2	38.0
Tare Container (g)	4.0	4.0	4.3	4.5	4.4	4.3
Wt. Dry Sample (g)	255.7	247.6	223.2	239.1	229.4	234.6
Moist Content	15.1%	14.2%	15.2%	16.6%	16.2%	16.2%
	-					
BH # 4						
Depth	1	2				
Depth Tare No.	23.0	38.0				
Depth Tare No. Wt. Sample Wet + Tare (g)	23.0 241.7	38.0 230.3				
Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g)	23.0 241.7 209.0	38.0 230.3 198.0				
Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g)	23.0 241.7 209.0 32.7	38.0 230.3 198.0 32.3				
Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g)	23.0 241.7 209.0 32.7 4.3	38.0 230.3 198.0 32.3 4.3				
Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g)	23.0 241.7 209.0 32.7	38.0 230.3 198.0 32.3				

AR Geotechnical Engineering

Project: Netook Crossing Technician: Jemal/Haile

	-	recillician.	Jemai/ Haii	<u>e</u>		
BH # 5	-					
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	28A	4A	55.0	9.0	19A	2A
Wt. Sample Wet + Tare (g)	259.8	282.4	247.0	257.4	242.5	275.0
Wt. Sample Dry + Tare (g)	227.7	245.6	215.1	223.9	210.6	239.8
Wt. Water (g)	32.1	36.8	31.9	33.5	31.9	35.2
Tare Container (g)	4.4	4.4	4.4	4.4	4.4	4.4
Wt. Dry Sample (g)	223.3	241.2	210.7	219.5	206.2	235.4
Moist Content	14.4%	15.3%	15.1%	15.3%	15.5%	15%
BH # 6	_					
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	61.0	40.0	45.0	15.0	11.0	27.0
Wt. Sample Wet + Tare (g)	252.7	237.2	252.4	221.4	246.1	258.5
Wt. Sample Dry + Tare (g)	222.5	204.9	218.6	193.3	212.2	223.9
Wt. Water (g)	30.2	32.3	33.8	28.1	33.9	34.6
Tare Container (g)	4.3	4.4	4.3	4.5	4.4	4.3
Wt. Dry Sample (g)	218.2	200.5	214.3	188.8	207.8	219.6
Moist Content	13.8%	16.1%	15.8%	14.9%	16.3%	15.8%
	•					
BH # 7						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	35.0	16.0	18.0	14.0	46.0	30.0
Wt. Sample Wet + Tare (g)	225.9	237.5	282.2	266.3	273.9	276.4
Wt. Sample Dry + Tare (g)	195.0	205.5	243.6	230.3	236.6	239.2
Wt. Water (g)	30.9	32.0	38.6	36.0	37.3	37.2
Tare Container (g)	4.3	4.4	4.3	4.3	4.3	4.3
Wt. Dry Sample (g)	190.7	201.1	239.3	226.0	232.3	234.9
Moist Content	16.2%	15.9%	16.1%	15.9%	16.1%	15.8%
BH # 8	1					
	1	2	2 CDT	4	-	6 CDT
Depth Tare No.	11.0	27.0	3 SPT 61.0	40.0	5 15.0	6 SPT 45.0
Wt. Sample Wet + Tare (g)	245.9					
Wt. Sample Dry + Tare (g)		275.0 234.5	288.8	251.3	268.5	272.0
Wt. Water (g)	212.5 33.4	40.5	248.5 40.3	216.6 34.7	232.4 36.1	236.0 36.0
Tare Container (g)	4.4	40.5	4.4	4.4	4.4	4.4
Wt. Dry Sample (g)	208.1	230.1	244.1	212.2	228.0	231.6
Moist Content						
worst content	16.0%	17.6%	16.5%	16.4%	15.8%	16%

AR Geotechnical Engineering

An deotechnical Eng		Technician: Jemal/Haile				
BH # 9						
Depth	1	4	5	6 SPT		
Tare No.	60.0	32.0	28.0	34.0		
Wt. Sample Wet + Tare (g)	246.9	266.7	264.6	257.5		
Wt. Sample Dry + Tare (g)	222.8	232.6	230.4	223.5		
Wt. Water (g)	24.1	34.1	34.2	34.0		
Tare Container (g)	4.5	4.5	4.3	4.3		
Wt. Dry Sample (g)	218.3	228.1	226.1	219.2		
Moist Content	11.0%	14.9%	15.1%	15.5%		
BH # 10						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	A6	A4	A1	A3	A2	A5
Wt. Sample Wet + Tare (g)	257.9	300.2	269.4	274.5	289.7	284.8
Wt. Sample Dry + Tare (g)	234.2	263.4	240.3	241.8	256.9	250.5
Wt. Water (g)	23.7	36.8	29.1	32.7	32.8	34.3
Tare Container (g)	4.4	4.3	4.2	4.4	4.3	4.3
Wt. Dry Sample (g)	229.8	259.1	236.1	237.4	252.6	246.2
Moist Content	10.3%	14.2%	12.3%	13.8%	13.0%	13.9%
BH # 11						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	104.0	2.0	17.0	64.0	3.0	29A
Wt. Sample Wet + Tare (g)	219.4	233.1	225.7	236.8	227.0	220.8
Wt. Sample Dry + Tare (g)	190.3	202.6	195.2	205.3	196.8	190.7
Wt. Water (g)	29.1	30.5	30.5	31.5	30.2	30.1
Tare Container (g)	4.4	4.4	4.4	4.4	4.4	4.4
Wt. Dry Sample (g)	185.9	198.2	190.8	200.9	192.4	186.3
Moist Content	15.7%	15.4%	16.0%	15.7%	15.7%	16%
BH # 12						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	B4	B5	В6	В7	B8	В9
Wt. Sample Wet + Tare (g)	269.5	282.0	271.6	290.7	276.5	284.8
Wt. Sample Dry + Tare (g)	237.2	248.3	236.1	252.4	242.9	251.0
Wt. Water (g)	32.3	33.7	35.5	38.3	33.6	33.8
Tare Container (g)	4.1	4.0	4.1	4.1	4.1	4.1
Wt. Dry Sample (g)	233.1	244.3	232.0	248.3	238.8	246.9
Moist Content	13.9%	13.8%	15.3%	15.4%	14.1%	13.7%

AR Geotechnical Engineering

Project: Netook Crossing Technician: Jemal/Haile

	-	r cerminerani.	Jemai/ Haii	<u> </u>		
	<u>-</u>					
D	1					
BH # 13						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	28.0	23.0	32.0	38.0	60.0	34.0
Wt. Sample Wet + Tare (g)	281.6	276.2	263.9	269.4	271.2	267.4
Wt. Sample Dry + Tare (g)	244.9	238.2	228.9	234.9	238.1	230.7
Wt. Water (g)	36.7	38.0	35.0	34.5	33.1	36.7
Tare Container (g)	4.4	4.3	4.3	4.3	4.3	4.3
Wt. Dry Sample (g)	240.5	233.9	224.6	230.6	233.8	226.4
Moist Content	15.3%	16.2%	15.6%	15.0%	14.2%	16.2%
BH # 14						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	36.0	103.0	37.0	19.0	12.0	29.0
Wt. Sample Wet + Tare (g)	289.8	264.9	248.0	287.9	286.4	276.6
Wt. Sample Dry + Tare (g)	259.8	236.1	223.1	257.8	256.7	243.5
Wt. Water (g)	31.7	28.8	24.9	30.1	29.7	33.1
Tare Container (g)	4.4	4.4	4.4	4.4	4.4	4.4
Wt. Dry Sample (g)	253.7	231.7	218.7	253.4	252.3	239.1
Moist Content					11.8%	
Moist Content	12.5%	12.4%	11.4%	11.9%	11.8%	14%
BH # 15						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	44.0	13.0	33.0	22.0	20.0	41.0
Wt. Sample Wet + Tare (g)	237.9	242.7	249.1	232.1	231.1	239.0
Wt. Sample Dry + Tare (g)	209.2	215.0	218.2	204.6	200.9	208.6
Wt. Water (g)	28.7	27.7	30.9	27.5	30.2	30.4
Tare Container (g)	4.3	4.4	4.6	4.3	4.3	4.3
Wt. Dry Sample (g)	204.9	210.6	213.6	200.3	196.6	204.3
Moist Content	14.0%	13.2%	14.5%	13.7%	15.4%	14.9%
	•					
BH # 16						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	A7	A8	A9	B1	B2	В3
Wt. Sample Wet + Tare (g)	255.0	284.1	274.1	285.2	276.0	277.9
Wt. Sample Dry + Tare (g)	232.5	252.6	241.0	251.6	243.4	245.3
Wt. Water (g)	22.5	31.5	33.1	33.6	32.6	32.6
Tare Container (g)	4.4	4.3	4.3	4.3	4.3	4.3
Wt. Dry Sample (g)	228.1	248.3	236.7	247.3	239.1	241.0
Moist Content	9.9%	12.7%	14.0%	13.6%	13.6%	13.5%

AR Geotechnical Engineering

Technician: Jemal/Haile		

	•					
BH # 17						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	46.0	30.0	18.0	35.0	16.0	14.0
Wt. Sample Wet + Tare (g)	277.5	293.8	275.0	275.2	281.2	282.9
Wt. Sample Dry + Tare (g)	245.5	254.9	239.0	239.9	246.5	245.5
Wt. Water (g)	32.0	38.9	36.0	35.3	34.7	37.4
Tare Container (g)	4.4	4.4	4.4	4.4	4.4	4.4
Wt. Dry Sample (g)	241.1	250.5	234.6	235.5	242.1	241.1
Moist Content	13.3%	15.5%	15.3%	15.0%	14.3%	16%
	_					
BH # 18						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	25.0	39.0	42.0	47.0	31.0	55.0
Wt. Sample Wet + Tare (g)	221.4	235.0	236.3	211.6	241.9	234.7
Wt. Sample Dry + Tare (g)	198.0	207.2	206.3	185.8	211.5	206.5
Wt. Water (g)	23.4	27.8	30.0	25.8	30.4	28.2
Tare Container (g)	4.4	4.4	4.3	4.3	4.3	4.6
Wt. Dry Sample (g)	193.6	202.8	202.0	181.5	207.2	201.9
Moist Content	12.1%	13.7%	14.9%	14.2%	14.7%	14.0%
	1					
BH # 19			1	1	Ī	
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	A1	A2	A3	A4	A5	A6
Wt. Sample Wet + Tare (g)	252.3	253.1	279.7	276.7	280.7	277.9
Wt. Sample Dry + Tare (g)	219.4	230.3	252.4	249.9	252.9	244.7
Wt. Water (g)	32.9	22.8	27.3	26.8	27.8	33.2
Tare Container (g)	4.4	4.3	4.3	4.3	4.3	4.3
Wt. Dry Sample (g)	215.0	226.0	248.1	245.6	248.6	240.4
Moist Content	15.3%	10.1%	11.0%	10.9%	11.2%	13.8%
	1					
BH # 20			1	1	Ī	1
Depth	1		3 SPT	4	5	6 SPT
Tare No.	2A	28A	19A	4A	55.0	9.0
Wt. Sample Wet + Tare (g)	201.0	262.0	253.9	241.1	274.2	259.8
Wt. Sample Dry + Tare (g)	185.1	233.0	226.6	220.9	251.5	244.5
			1 272	1 20 2	22.7	15.3
Wt. Water (g)	15.9	29.0	27.3	20.2		
Tare Container (g)	4.4	4.4	4.4	4.4	4.4	4.4

AR Geotechnical Engineering

Technician: Jemal/Haile		
<u> </u>		

	•					
BH # 21						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	37.0	7.0	5.0	21.0	111.0	1.0
Wt. Sample Wet + Tare (g)	279.4	265.2	264.4	291.3	271.0	275.9
Wt. Sample Dry + Tare (g)	251.5	239.0	225.9	259.7	240.9	233.3
Wt. Water (g)	27.9	26.2	38.5	31.6	30.1	42.6
Tare Container (g)	4.4	4.4	4.3	4.3	4.3	4.6
Wt. Dry Sample (g)	247.1	234.6	221.6	255.4	236.6	228.7
Moist Content	11.3%	11.2%	17.4%	12.4%	12.7%	18.6%
BH # 22						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	C1	C2	C3	C4	C5	C6
Wt. Sample Wet + Tare (g)	268.8	285.2	286.7	272.2	279.0	268.4
Wt. Sample Dry + Tare (g)	234.7	246.7	246.2	236.3	244.3	231.9
Wt. Water (g)	34.1	38.5	40.5	35.9	34.7	36.5
Tare Container (g)	4.1	4.0	4.1	4.1	4.1	4.1
Wt. Dry Sample (g)	230.6	242.7	242.1	232.2	240.2	227.8
					4 4 40/	4.6.00/
Moist Content	14.8%	15.9%	16.7%	15.5%	14.4%	16.0%
	14.8%	15.9%	16.7%	15.5%	14.4%	16.0%
BH # 23						
BH # 23 Depth	14.8%	2	3 SPT	4	5	6 SPT
BH # 23 Depth Tare No.	47.0	2 55.0	3 SPT 25.0	4 31.0	5 39.0	6 SPT 42.0
BH # 23 Depth	1	2	3 SPT	4	5	6 SPT
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g)	47.0	2 55.0	3 SPT 25.0 276.4 239.8	4 31.0 250.5 217.1	5 39.0	6 SPT 42.0
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g)	1 47.0 219.4	55.0 227.3	3 SPT 25.0 276.4	4 31.0 250.5 217.1 33.4	5 39.0 243.1	6 SPT 42.0 273.2
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g)	1 47.0 219.4 196.4 23.0 4.4	2 55.0 227.3 197.4 29.9 4.5	3 SPT 25.0 276.4 239.8 36.6 4.4	4 31.0 250.5 217.1 33.4 4.3	5 39.0 243.1 210.3 32.8 4.4	6 SPT 42.0 273.2 234.3 38.9 4.4
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g)	1 47.0 219.4 196.4 23.0 4.4 192.0	2 55.0 227.3 197.4 29.9 4.5 192.9	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4	4 31.0 250.5 217.1 33.4 4.3 212.8	5 39.0 243.1 210.3 32.8 4.4 205.9	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g)	1 47.0 219.4 196.4 23.0 4.4	2 55.0 227.3 197.4 29.9 4.5	3 SPT 25.0 276.4 239.8 36.6 4.4	4 31.0 250.5 217.1 33.4 4.3	5 39.0 243.1 210.3 32.8 4.4	6 SPT 42.0 273.2 234.3 38.9 4.4
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content	1 47.0 219.4 196.4 23.0 4.4 192.0	2 55.0 227.3 197.4 29.9 4.5 192.9	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4	4 31.0 250.5 217.1 33.4 4.3 212.8	5 39.0 243.1 210.3 32.8 4.4 205.9	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content BH # 24	1 47.0 219.4 196.4 23.0 4.4 192.0 12.0%	2 55.0 227.3 197.4 29.9 4.5 192.9 15.5%	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4 15.5%	4 31.0 250.5 217.1 33.4 4.3 212.8 15.7%	5 39.0 243.1 210.3 32.8 4.4 205.9 15.9%	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9 17%
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content BH # 24 Depth	1 47.0 219.4 196.4 23.0 4.4 192.0 12.0%	2 55.0 227.3 197.4 29.9 4.5 192.9 15.5%	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4 15.5%	4 31.0 250.5 217.1 33.4 4.3 212.8 15.7%	5 39.0 243.1 210.3 32.8 4.4 205.9 15.9%	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9 17%
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content BH # 24 Depth Tare No.	1 47.0 219.4 196.4 23.0 4.4 192.0 12.0%	2 55.0 227.3 197.4 29.9 4.5 192.9 15.5%	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4 15.5% 3 SPT 111.0	4 31.0 250.5 217.1 33.4 4.3 212.8 15.7%	5 39.0 243.1 210.3 32.8 4.4 205.9 15.9%	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9 17%
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content BH # 24 Depth Tare No. Wt. Sample Wet + Tare (g)	1 47.0 219.4 196.4 23.0 4.4 192.0 12.0%	2 55.0 227.3 197.4 29.9 4.5 192.9 15.5% 2 21.0 205.5	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4 15.5% 3 SPT 111.0 243.7	4 31.0 250.5 217.1 33.4 4.3 212.8 15.7% 4 7.0 232.0	5 39.0 243.1 210.3 32.8 4.4 205.9 15.9% 5 5 5.0 234.5	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9 17% 6 SPT 1.0 233.8
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content BH # 24 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g)	1 47.0 219.4 196.4 23.0 4.4 192.0 12.0% 1 37.0 241.9 212.6	2 55.0 227.3 197.4 29.9 4.5 192.9 15.5% 2 21.0 205.5 180.4	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4 15.5% 3 SPT 111.0 243.7 212.0	4 31.0 250.5 217.1 33.4 4.3 212.8 15.7% 4 7.0 232.0 202.8	5 39.0 243.1 210.3 32.8 4.4 205.9 15.9% 5 5.0 234.5 205.1	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9 17% 6 SPT 1.0 233.8 203.2
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content BH # 24 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g)	1 47.0 219.4 196.4 23.0 4.4 192.0 12.0% 137.0 241.9 212.6 29.3	2 55.0 227.3 197.4 29.9 4.5 192.9 15.5% 2 21.0 205.5 180.4 25.1	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4 15.5% 3 SPT 111.0 243.7 212.0 31.7	4 31.0 250.5 217.1 33.4 4.3 212.8 15.7% 4 7.0 232.0 202.8 29.2	5 39.0 243.1 210.3 32.8 4.4 205.9 15.9% 5 5.0 234.5 205.1 29.4	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9 17% 6 SPT 1.0 233.8 203.2 30.6
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content BH # 24 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g)	1 47.0 219.4 196.4 23.0 4.4 192.0 12.0% 1 37.0 241.9 212.6 29.3 4.4	2 55.0 227.3 197.4 29.9 4.5 192.9 15.5% 2 21.0 205.5 180.4 25.1 4.4	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4 15.5% 3 SPT 111.0 243.7 212.0 31.7 4.3	4 31.0 250.5 217.1 33.4 4.3 212.8 15.7% 4 7.0 232.0 202.8 29.2 4.3	5 39.0 243.1 210.3 32.8 4.4 205.9 15.9% 5 5.0 234.5 205.1 29.4 4.3	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9 17% 6 SPT 1.0 233.8 203.2 30.6 4.6
BH # 23 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g) Tare Container (g) Wt. Dry Sample (g) Moist Content BH # 24 Depth Tare No. Wt. Sample Wet + Tare (g) Wt. Sample Dry + Tare (g) Wt. Water (g)	1 47.0 219.4 196.4 23.0 4.4 192.0 12.0% 137.0 241.9 212.6 29.3	2 55.0 227.3 197.4 29.9 4.5 192.9 15.5% 2 21.0 205.5 180.4 25.1	3 SPT 25.0 276.4 239.8 36.6 4.4 235.4 15.5% 3 SPT 111.0 243.7 212.0 31.7	4 31.0 250.5 217.1 33.4 4.3 212.8 15.7% 4 7.0 232.0 202.8 29.2	5 39.0 243.1 210.3 32.8 4.4 205.9 15.9% 5 5.0 234.5 205.1 29.4	6 SPT 42.0 273.2 234.3 38.9 4.4 229.9 17% 6 SPT 1.0 233.8 203.2 30.6

AR Geotechnical Engineering

Technician: Jemal/Haile

BH # 25						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	43.0	52.0	24.0	100.0	8.0	47A
Wt. Sample Wet + Tare (g)	243.0	275.1	281.5	258.0	238.2	296.8
Wt. Sample Dry + Tare (g)	215.6	246.5	245.3	225.8	208.0	259.4
Wt. Water (g)	27.4	28.6	36.2	32.2	30.2	37.4
Tare Container (g)	4.3	4.5	4.3	4.1	4.3	4.4
Wt. Dry Sample (g)	211.3	242.0	241.0	221.7	203.7	255.0
Moist Content	13.0%	11.8%	15.0%	14.5%	14.8%	14.7%
BH # 26						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	8.0	24.0	43.0	52.0	48.0	47A
Wt. Sample Wet + Tare (g)	281.5	288.8	264.3	280.3	256.6	263.8
Wt. Sample Dry + Tare (g)	244.8	249.4	227.7	241.4	221.0	227.7
Wt. Water (g)	36.7	39.4	36.6	38.9	35.6	36.1
Tare Container (g)	4.3	4.3	4.3	4.5	4.5	4.4
Wt. Dry Sample (g)	240.5	245.1	223.4	236.9	216.5	223.3
Moist Content	15.3%	16.1%	16.4%	16.4%	16.4%	16%
BH # 27						
Depth	1	2	3 SPT	4	5	6 SPT
Tare No.	3.0	64.0	2.0	104.0	29A	17.0
Wt. Sample Wet + Tare (g)	269.7	282.6	264.4	275.8	288.8	266.6
Wt. Sample Dry + Tare (g)	238.5	249.4	228.2	238.7	249.8	231.5
Wt. Water (g)	31.2	33.2	36.2	37.1	39.0	35.1
Tare Container (g)	4.4	4.5	4.3	4.4	4.3	4.3
Wt. Dry Sample (g)	234.1	244.9	223.9	234.3	245.5	227.2
Moist Content	13.3%	13.6%	16.2%	15.8%	15.9%	15.4%